CONTINUOUS FUNCTIONS ON MULTIPOLAR SETS

RAMASAMY JESURAJ

Abstract. Let \(\Omega = \Omega_1 \times \cdots \times \Omega_n \) \((n > 1)\) be a product of \(n \) Brelot harmonic spaces each of which has a bounded potential, and let \(K \) be a compact subset of \(\Omega \). Then, \(K \) is an \(n \)-polar set with the property that every \(i \)-section \((1 \leq i < n)\) of \(K \) through any point in \(\Omega \) is \((n - i)\) polar if and only if every positive continuous function on \(K \) can be extended to a continuous potential on \(\Omega \). Further, it has been shown that if \(f \) is a nonnegative continuous function on \(\Omega \) with compact support, then \(MRf \), the multireduced function of \(f \) over \(\Omega \), is also a continuous function on \(\Omega \).

1. Introduction. Let \(\Omega_j \) for \(j = 1, 2, \ldots, n \) be locally compact spaces with countable basis for the topology and be Brelot spaces [5]. The principal results of this paper (cf. Theorem 3 and Theorem 12) characterize certain exceptional compact sets \(K \) contained in the product space \(\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n \) in terms of extendibility of positive continuous functions on \(K \), to a positive \(n \)-potential on the entire space. This is a natural generalization of the corresponding results in [7] in the case of a single harmonic space. A key result, independent of interest, needed in the proof of the main results in Theorem 5 shows that the multireduced function of a continuous function is continuous. The results of this paper formed a part of my Ph. D. thesis submitted to McGill University [6]. I would like to thank Professor Gowrisankaran for his help in preparation of this work.

We shall use the notation and results from [3, 4 and 8] concerning \(n \)-harmonic, \(n \)-superharmonic functions, and \(n \)-potentials. We assume that there is a bounded \(n \)-superharmonic function on \(\Omega_1 \times \cdots \times \Omega_n \). Notice that it is equivalent to the assumption that each \(\Omega_j \) \((j = 1, \ldots, n)\) has a bounded potential. If constants are superharmonic, then this assumption trivially holds. Throughout this paper, unless it is explicitly mentioned, \(n \) is an integer \(\geq 2 \), and we denote \(\Omega_1 \times \cdots \times \Omega_n \) by \(\Omega \).

In the course of proving our main results we need a number of results that are routine generalizations of similar ones in the single variable case. The proofs of some of them are not quite obvious, and can be found in [6].

Definition 1. Let \(f \) be an extended real-valued function on \(\Omega \). Define \(MRf(x) = \inf\{u(x): u \text{ is } n\text{-hyperharmonic, and } u \geq f \text{ on } \Omega\} \). For each subset \(E \) of \(\Omega \), let \(X_E \) be the characteristic function of \(E \), and let \(X_E \cdot f \) be the pointwise product function on \(\Omega \). The function \(MR(X_E \cdot f) \) is called the multireduced function of \(f \) over \(E \).
Observe that \((MR(X_E \cdot f))^\dagger\), the lower semicontinuous regularization (see [1]) of
\(MR(X_E \cdot f)\), is an \(n\)-hyperharmonic function on \(\Omega\).

Let us recall the definition of a section from [8].

Definition 2. Let \(E\) be a subset of \(\Omega\), \(n > 1\), and \(i\) an integer such that
\(1 \leq i \leq n - 1\). Let \(r_1, \ldots, r_i\) be integers with \(1 \leq r_1 < r_2 < \cdots < r_i \leq n\). Let \(t = (x_{r_1}, \ldots, x_{r_i})\) be a point in
\(\Omega_{r_1} \times \cdots \times \Omega_{r_i}\) \((1 \leq j \leq n)\) with \(\{r_1, \ldots, r_i\} \subseteq \{s_1, \ldots, s_j\} \subseteq \{1, 2, \ldots, n\}\). Then the \((r_1, \ldots, r_i)\)-section of \(E\) through \(t\) is defined as

\[
\begin{align*}
z \text{ in } \prod_{k=1}^{n} \Omega_k, \quad (y_1, \ldots, y_n) & \text{ is in } E, \text{ whenever } y_k = x_k \text{ for } k \text{ in } \{r_1, \ldots, r_i\}, \\
k \text{ not in } \{r_1, \ldots, r_i\}, \quad y_k = z_k & \text{ for } k \text{ not in } \{r_1, \ldots, r_i\},
\end{align*}
\]

which would be denoted by \(E[(r_1, \ldots, r_i), t]\). For \(x\) in \(\Omega\), an \(i\)-section of \(E\) through \(x\) is always denoted by \(E[(r_1, \ldots, r_i), x]\) for some \((r_1, \ldots, r_i)\).

2. **A characterization of a class of multipolar sets.** The following theorem gives a
necessary condition for a compact set to be \(n\)-polar. We recall that a set \(E\) is \(n\)-polar
if there exists a positive \(n\)-superharmonic function which is identically infinity on \(E\).

Theorem 3. Let \(K\) be a compact subset of \(\Omega\) such that every positive continuous
function on \(K\) can be uniformly approximated on \(K\) by positive \(n\)-superharmonic
functions on \(\Omega\). Then,

1. If \(K\) has more than one point, then \(K\) is an \(n\)-polar set.
2. In addition, if point sets are polar in \(\Omega_j\) for \(j = 1, 2, \ldots, n\), then
 a. Every \(i\)-section of \(K\) through any point in \(\Omega\) is \((n - i)\)-polar for \(i = 1, 2, \ldots, n - 1\).
 b. Given \(z\) in \(\Omega\) such that \(z\) not in \(K\), there is a positive \(n\)-superharmonic function \(u\) on
 \(\Omega\) such that \(u(z) < \infty\) and \(u(x) = \infty\) for all \(x\) in \(K\).

Proof. (1) The proof of the fact that the hypothesis implies the \(n\)-polarity of \(K\) is
very similar to the proof of Theorem 1 of [7].

(2.a) This part is proved by induction on \(n\). Let us make the induction assumption
that for all products of Brelot spaces \(\Omega_1 \times \cdots \times \Omega_m\) with \(m < n\), the hypothesis of
the theorem implies the property (a).

Let us now consider a compact set \(K\) contained in \(\Omega\) satisfying the hypothesis. Fix
\(z\) in \(\Omega\), and \(i\) such that \(1 \leq i \leq n - 1\). By a suitable rearrangement, if necessary, we
may consider the \(i\)-section \(K[(1, 2, \ldots, i), z]\) to be the general \(i\)-section of \(K\). This
set is compact and contained in \(\Omega_{i+1} \times \cdots \times \Omega_n\). Let us consider further the
nontrivial case when \(K[(1, 2, \ldots, i), z]\) contains more than one point. We shall show
that this set is \((n - i)\)-polar. By the induction hypothesis, it suffices to prove that an
arbitrary positive continuous function \(f\) on \(K[(1, 2, \ldots, i), z]\) can be uniformly
approximated on \(K[(1, 2, \ldots, i), z]\) by positive \((n - i)\)-superharmonic functions.

Let us consider the copy \(L[i, z]\) of the above compact set in \(K\), viz.,
\(L[i, z] = \{((z_1, \ldots, z_i, y_{i+1}, \ldots, y_n) \text{ in } K\} \). \(L[i, z]\) is a compact subset of \(K\), and \(f\) can be
considered as a positive continuous function on this set. By the Tietze extension
theorem, there exists a positive continuous function \(g\) on \(K\) which extends \(f\). By
hypothesis, for \(\varepsilon > 0 \), there exists a positive \(n \)-superharmonic function \(u \) on \(\Omega \) such that \(|u - g| < \varepsilon \) on \(K \) uniformly. Set

\[
v(y_{i+1}, \ldots, y_n) = u(z_1, \ldots, z_i, y_{i+1}, \ldots, y_n).
\]

This function is \((n - i)\) superharmonic on \(\Omega_{i+1} \times \cdots \times \Omega_n \), and clearly \(|f - v| < \varepsilon\) uniformly on \(K \left[(1, 2, \ldots, i), z \right] \). Hence, by the induction assumption we conclude that \(K \left[(1, 2, \ldots, i), z \right] \) is \((n - i)\)-polar. This concludes the proof of (2.a).

(2.b) By Theorem 2.4 of [8], for \(n \)-polar sets, the properties (2.a) and (2.b) are equivalent. This completes the proof of the theorem.

Using the results of [3], it is easy to prove the following proposition.

Proposition 4. Let \(v \) be an \(n \)-superharmonic function on \(\Omega \), and let \(\delta_j \) be a regular domain in \(\Omega_i \), \(i = 1, 2, \ldots, n \). For \(j = 0, 1, 2, \ldots, n \), define \(v_j \) on \(\Omega \) as follows.

\[
v_0(x_1, \ldots, x_n) = v(x_1, \ldots, x_n),
\]

and for \(j = 1, 2, \ldots, n \), let

\[
v_j(x_1, \ldots, x_n) = \begin{cases} \int v_{j-1}(x_1, \ldots, x_{j-1}, z, x_{j+1}, \ldots, x_n) \, dp_j^\delta(x) & \text{if } x_j \text{ in } \delta_j, \\ v_{j-1}(x_1, \ldots, x_n) & \text{if } x_j \text{ not in } \delta_j. \end{cases}
\]

Then,

1. \(v_j \) is an \(n \)-superharmonic function on \(\Omega \), and \(v_j(x) \leq v_{j-1}(x) \) for all \(x \) in \(\Omega \).
2. \(v_n \) is an \(n \)-harmonic function on \(\delta_1 \times \cdots \times \delta_n \).
3. \(v_n(x) = v(x) \) for every \(x \) in \((\Omega_1 \setminus \delta_1) \times \cdots \times (\Omega_n \setminus \delta_n) \).

The following theorem is a generalization, to product of harmonic spaces, of a similar result in a single harmonic space (see Proposition 2.2.3 of [2]).

Theorem 5. If \(f \) is a nonnegative continuous function on \(\Omega \) with compact support, then \(MRf \) is a continuous function on \(\Omega \).

Recall that the support of a real-valued function is the smallest closed set outside which the function is identically zero.

To prove this theorem we need several lemmas.

Lemma 6. Let \(I \) be an indexing set, and \(\{ g_i : i \in I \} \) a family of continuous functions on \(\Omega \) with compact supports. Let there be an \(\varepsilon > 0 \) such that \(|g_i(x) - g_j(x)| \leq \varepsilon\) for all \(x \) in \(\Omega \), and for all \(i \) and \(j \) in \(I \). Further, let us suppose that one of the following two holds:

1. The constant function \(1 \) is \(n \)-superharmonic on \(\Omega \).
2. There is a relatively compact open set \(U \) of \(\Omega \) such that support of \(g_i \) is contained in \(U \) for every \(i \) in \(I \).

Then, there is a constant \(c > 0 \) such that \(|MRg_i(x) - MRg_j(x)| < ce\) for \(x \) in \(\Omega \), and for \(i \) and \(j \) in \(I \). In case (1) holds, \(c \) can be chosen to be 1, and in the case where (2) holds, \(c \) depends only upon \(U \) (not on the functions \(g_i \)).

Proof. If condition (1) holds the proof is trivial. Suppose that (2) holds. Choose a nonnegative continuous function \(f \) on \(\Omega \) with compact support and \(f = 1 \) on \(U \). Then, \(MRf \) is a bounded \(n \)-potential on \(\Omega \), and hence there is a \(c > 0 \) such that
MRf \leq c \text{ on } \Omega. \text{ Observing the fact that } g_i \leq g_j + \epsilon f \text{ on } \Omega \text{ for } i \text{ and } j, \text{ the result follows, and the proof is complete.}

Lemma 7. Let \(f \) be a continuous function on \(\Omega \) with compact support. Let \(1 \leq j < n \) be fixed. Further, let \(d \) be a metric on \(\Omega_1 \times \cdots \times \Omega_j \). For \(x' \) in \(\Omega_1 \times \cdots \times \Omega_j \), define \(f_{x'} \) on \(\Omega_{j+1} \times \cdots \times \Omega_n \) as \(x'' \mapsto f(x', x'') \). Then given \(\epsilon > 0 \), there is an \(\eta > 0 \) such that \(|MRf_{x'}(z) - MRf_{y'}(z)| < \epsilon \), for every \(z \) in \(\Omega_{j+1} \times \cdots \times \Omega_n \) and for all \(x', y' \) in \(\Omega_1 \times \cdots \times \Omega_j \), with \(d(x', y') < \eta \). (Note that the multireduced functions \(MRf_{x'} \) and \(MRf_{y'} \) are defined with respect to the space \(\Omega_{j+1} \times \cdots \times \Omega_n \).)

Proof of Theorem 5. The proof is by induction on \(n \). For \(n = 1 \), the result is true (see Proposition 2.2.3 of [2]). Let us prove the result for the case \(n = 2 \). Set \(v = MRf \). Then, it is obvious that \(v \) is lower semicontinuous on \(\Omega \). Therefore, it suffices to prove the upper semicontinuity of \(v \) by proving that for any \((z_1, z_2)\) in \(\Omega_1 \times \Omega_2 \)

\[
\limsup_{(x_1, x_2) \to (z_1, z_2)} v(x_1, x_2) \leq v(z_1, z_2).
\]

Let \((z_1, z_2)\) in \(\Omega_1 \times \Omega_2 \) be fixed, and let \(\epsilon > 0 \). Since \(f \) is continuous, and \(v \) is lower semicontinuous, there are relatively compact open neighborhoods \(U_1 \) and \(U_2 \) of \((z_1, z_2)\) with \(U_1 \subset U_2 \), and there is a 2-harmonic function \(h \) on \(\Omega_1 \times \Omega_2 \) satisfying the following conditions.

1. \(h(z_1, z_2) = 1 \).
2. For all \((x_1, x_2)\) in \(U_1 \subset U_2 \), we have

\[
\begin{align*}
(1) & \quad h(x_1, x_2) \geq 1 - \epsilon, \\
(2) & \quad f(x_1, x_2) \leq (f(z_1, z_2) + \epsilon) h(x_1, x_2),
\end{align*}
\]

and

\[
(3) \quad v(x_1, x_2) \geq (v(z_1, z_2) - \epsilon) h(x_1, x_2).
\]

Let \(d_i \) be a metric in \(\Omega_i \) (\(i = 1, 2 \)). Then, by Lemma 7, there is an \(\eta > 0 \) such that, \(Rf_{x_i}(s) - \epsilon < Rf_{y_i}(s) < Rf_{x_i}(s) + \epsilon \) for all \(s \) in \(\Omega_1 \), and

\[
Rf_{x_i}(t) - \epsilon < Rf_{y_i}(t) < Rf_{x_i}(t) + \epsilon \quad \text{ for all } t \text{ in } \Omega_2,
\]

\[
\text{if } d_1(x_1, y_1) < \eta, \text{ and } d_2(x_2, y_2) < \eta.
\]

Now, choose \(\delta_i \), a regular domain in \(\Omega_i \) (\(i = 1, 2 \)), such that \((z_1, z_2)\) is in \(\delta_1 \times \delta_2 \subset \overline{\delta}_1 \times \overline{\delta}_2 \subset U_2 \). We may assume that the diameter of \(\delta_i \) is small enough and it satisfies

\[
\int d\rho_{x_i}^\delta(t) \geq 1 - \epsilon \quad \text{ for every } x_i \text{ in } \delta_i, \quad i = 1, 2.
\]
Put \(w = v + 2h \). Then, \(w \) is a 2-superharmonic function on \(\Omega_1 \times \Omega_2 \). Define a function \(u \) as follows.

\[
\begin{cases}
 \iint w(y_1, y_2) \, d\rho_{y_1}^{\delta_1}(y_1) \, d\rho_{y_2}^{\delta_2}(y_2) & \text{if } (x_1, x_2) \text{ in } \delta_1 \times \delta_2, \\
 \int w(x_1, y_2) \, d\rho_{x_2}^{\delta_2}(y_2) & \text{if } x_1 \text{ not in } \delta_1, \text{ and } x_2 \text{ in } \delta_2, \\
 \int w(y_1, x_2) \, d\rho_{x_1}^{\delta_1}(y_1) & \text{if } x_1 \text{ in } \delta_1, \text{ and } x_2 \text{ not in } \delta_2, \\
 w(x_1, x_2) & \text{otherwise.}
\end{cases}
\]

It is clear that \(u \) is a 2-superharmonic function on \(\Omega_1 \times \Omega_2 \), \(u \leq w \), and \(u \) is 2-harmonic on \(\delta_1 \times \delta_2 \).

We claim that \(u \geq (1 - \epsilon)f \) on \(\Omega_1 \times \Omega_2 \). The proof of this claim is given by splitting into four cases, according to whether \(x_1 \) is in \(\delta_1 \) or not, and \(x_2 \) is in \(\delta_2 \) or not.

Case (i). Let \((x_1, x_2) \) be in \(\delta_1 \times \delta_2 \). Then from the definition of \(u \) and \(w \), we have

\[
u(x_1, x_2) = \int w(y_1, y_2) \, d\rho_{y_1}^{\delta_1}(y_1) \, d\rho_{y_2}^{\delta_2}(y_2) \\
\geq \int (v(z_1, z_2) + \epsilon)h(y_1, y_2) \, d\rho_{y_1}^{\delta_1}(y_1) \, d\rho_{y_2}^{\delta_2}(y_2) \\
\geq (v(z_1, z_2) + \epsilon)h(x_1, x_2) \\
\geq (1 - \epsilon)f(x_1, x_2) \ (\text{as } f > 0),
\]

Case (ii). Let \(x_1 \) be in \(\delta_1 \) and \(x_2 \) not in \(\delta_2 \). Then,

\[
u(x_1, x_2) = \int w(y_1, x_2) \, d\rho_{y_1}^{\delta_1}(y_1) \\
= \int (Rf_{x_1}(x_2) - \epsilon) + 2eh(x_1, x_2) \, d\rho_{y_1}^{\delta_1}(y_1) \\
\geq (Rf_{x_1}(x_2) - \epsilon)(1 - \epsilon) + 2eh(x_1, x_2) \ (\text{as } Rf_{x_1} > f_{x_1} \text{ on } \Omega_2) \\
= (f(x_1, x_2) - \epsilon)(1 - \epsilon) + 2\epsilon(1 - \epsilon) \ (\text{using (1)}) \\
> (1 - \epsilon)f(x_1, x_2) \ (\text{as } f > 0).
\]
Case (iii). Let x_1 not be in δ_1 and x_2 in δ_2. The proof is similar to the previous case.

Case (iv). Let x_1 not be in δ_1 and x_2 not in δ_2. Then the proof trivially follows from the definitions of u, v and w. Thus, the claim is proved.

Now, $u \geq (1 - \epsilon)f$ on $\Omega_1 \times \Omega_2$ gives that $u \geq (1 - \epsilon)v$ on $\Omega_1 \times \Omega_2$. In particular, if (x_1, x_2) is in $\delta_1 \times \delta_2$ then

$$
(1 - \epsilon)u(x_1, x_2) \leq \int \int v(y_1, y_2) \, d\rho_{x_1}^{\delta_1}(y_1) \, d\rho_{x_2}^{\delta_2}(y_2) + 2h(x_1, x_2).
$$

The right-hand side of the above inequality is a 2-harmonic function on $\delta_1 \times \delta_2$, hence is a continuous function on $\delta_1 \times \delta_2$. Taking lim sup as $(x_1, x_2) \to (z_1, z_2)$ in $\Omega_1 \times \Omega_2$, and noticing that v is a 2-superharmonic function we get

$$
(1 - \epsilon) \limsup_{(x_1, x_2) \to (z_1, z_2)} v(x_1, x_2) \leq v(z_1, z_2) + 2\epsilon.
$$

As $\epsilon > 0$ is arbitrary, we have

$$
\limsup_{(x_1, x_2) \to (z_1, z_2)} v(x_1, x_2) \leq v(z_1, z_2).
$$

Since (z_1, z_2) is an arbitrary point in $\Omega_1 \times \Omega_2$, it follows that v is upper semicontinuous on $\Omega_1 \times \Omega_2$. Hence, v is continuous on $\Omega_1 \times \Omega_2$, and this concludes the proof for the case $n = 2$.

To complete the proof of the induction, we proceed from the case of functions of $n - 1$ variables to functions of n variables in exactly the same way. We remark that the choice of u in the above proof is replaced by w_n as defined in Proposition 4. The rest of the details are absolutely the same. This allows us to conclude that MRf is in general a continuous function whenever f is a nonnegative continuous function with compact support, completing the proof of the theorem.

As an immediate consequence, we have the following corollary.

Corollary 8. If f is a nonnegative continuous function on Ω with compact support, then MRf is a continuous n-potential on Ω.

Though the following result is essentially a corollary to the above theorem, we will state it as a theorem due to its importance. We omit the proof.

Theorem 9. Let v be a positive n-superharmonic function on Ω. Then, there is a sequence v_j of continuous n-potentials such that v_j increases pointwise to v on Ω as $j \to \infty$.

From now on K is a compact n-polar subset of Ω, such that every i-section of K through any point of Ω is $(n - i)$-polar, for $i = 1, 2, \ldots, n - 1$.

The next theorem is the converse of Theorem 3.

Theorem 10. Given a positive continuous function f on K and an $\epsilon > 0$, there exists a continuous n-potential p on Ω such that $|f - p| < \epsilon$ on K.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let \(\{U_j\} \), \(j = 1, 2, 3, \ldots \), be a decreasing sequence of relatively compact subsets of \(\Omega \) such that \(U_j \supseteq \overline{U}_{j+1} \supseteq U_{j+1} \) for \(j = 1, 2, \ldots \), and \(K = \cap\{U_j: j = 1, 2, 3, \ldots \} \). For each \(j \), let \(f_j \) be a nonnegative continuous extension of \(f \) to \(\Omega \) with support of \(f_j \subset U_j \). By taking infimum at each stage, we may assume that \(\{f_j\} \) is a decreasing sequence of functions on \(\Omega \).

Put \(p_j = MRf_j \). Then, by Corollary 8, \(p_j \) is a continuous \(n \)-potential, for each \(j \). Following the proof Theorem 4 of [7], we can show that \(p_j \) decreases pointwise to \(f \) on \(K \) as \(j \to \infty \). Using Dini's Theorem, we conclude that \(p_j \) converges to \(f \) uniformly on \(K \). Thus, there is an \(m \) such that \(|f(x) - p_j(x)| < \epsilon \) if \(j \geq m \), for all \(x \) in \(K \). The choice \(p = p_m \) meets the requirement of the theorem, completing the proof.

The following result is an analogue of Theorem 5 of [7], and can be proved analogously with the help of Theorem 10.

Proposition 11. Let \(f_0 \) be a positive continuous function on \(K \), and \(F_0 \) be a relatively compact open neighborhood of \(K \). Put \(F = F_0 \), and let \(f \) be a nonnegative continuous extension of \(f_0 \) to \(\Omega \), such that \(f > 0 \) on \(F \). Then, given \(\epsilon > 0 \), there exists a continuous potential \(p \) on \(\Omega \) such that \(p < f \) on \(F \), and \(p \geq f_0 - \epsilon \) on \(K \).

Our ultimate aim is the following theorem, for the case \(n \geq 2 \).

Theorem 12. Given a positive continuous function \(f_0 \) on \(K \), there is a continuous \(n \)-potential \(p \) on \(\Omega \) such that \(p = f_0 \) on \(K \).

Proof. The existence of an \(n \)-potential \(p \) such that \(p = f_0 \) on \(K \) can be proved as in the case \(n = 1 \). (See Theorem 2 of [7].) However, in proving the continuity of \(p \), in the case \(n = 1 \), we have explicitly used the fact that \(Rg \) is harmonic outside the support of \(g \). This result is no longer valid for \(MRg \) when \(n > 1 \). Hence, we modify the proof as follows. We also note that the same method works in the case \(n = 1 \).

Let \(\epsilon > 0 \). For a continuous function \(g \) on \(K \), define
\[
\|g\|_K = \sup\{|g(x)|: x \in K\},
\]
and if \(g \) is a bounded continuous function on \(\Omega \), then define
\[
\|g\|_\infty = \sup\{|g(x)|: x \in \Omega\}.
\]
Let \(q \) be a bounded continuous \(n \)-potential on \(\Omega \). We may assume that \(q \geq 1 \) on \(K \).

Let \(F_0 \) be a relatively compact open set containing \(K \) and let \(F = \overline{F_0} \). Choose \(f \) a nonnegative continuous extension of \(f_0 \) to \(\Omega \) with \(f > 0 \) on \(F \), and \(\|f\|_\infty = \|f_0\|_K \). Then, by the previous theorem, there is a continuous \(n \)-potential \(q_0 \) on \(\Omega \) such that \(q_0 < f \) on \(F \) and \(q_0 > f_0 - \epsilon \) on \(K \). Let \(p_0 = \inf\{\|f_0\|_K q, q_0\} \) on \(\Omega \). Then, \(p_0 \) is a bounded continuous \(n \)-potential on \(\Omega \). Further, \(p_0 \leq q_0 < f \) on \(F \). If \(x \) is in \(K \), then \(q(x) \geq 1 \), and hence,
\[
\|f_0\|_K q(x) \geq \|f_0\|_K = \|f\|_\infty \geq f(x) > q_0(x).
\]
Therefore, \(p_0 = q_0 \) on \(K \) and hence, \(p_0 \geq f_0 - \varepsilon \) on \(K \). Thus, there is a bounded continuous \(n \)-potential \(p_0 \) such that

1. \(p_0(x) < f(x) \) for all \(x \) in \(F \),
2. \(p_0(x) \geq f_0(x) - \varepsilon \) for all \(x \) in \(K \),
3. \(\|p_0\|_\infty < \|f_0\|_\infty \|q\|_\infty \).

Put \(g_1 = \max(f - p_0, 0) \) on \(\Omega \). Then, \(g_1 \) is a nonnegative continuous function and \(g_1 > 0 \) on \(F \). Let \(g_2 \) be a nonnegative continuous on \(\Omega \) such that \(g_2 = g_1 \) on \(K \) and \(g_2 > 0 \) on \(F \). Since \(g_2 = g_1 = f - p_0 \) on \(K \), we may even choose \(g_2 \) such that \(\|g_2\|_\infty = \|f - p_0\|_\infty \). Set \(f_1 = \inf\{g_1, g_2\} \). Then, \(f_1 \) is a nonnegative continuous function on \(\Omega \) with \(f_1 > 0 \) on \(F \) and \(f_1 = f - p_0 \) on \(K \). As before, there is a continuous \(n \)-potential \(p_1 \) such that

1. \(p_1(x) < f_1(x) \) for every \(x \) in \(F \),
2. \(p_1(x) \geq f_1(x) - \varepsilon/2 \) for every \(x \) in \(K \),
3. \(\|p_1\|_\infty \leq \|f_1\|_\infty \|q\|_\infty \).

Now, \(f_1(x) \leq g_1(x) \leq f(x) - p_0(x) \) on \(F \), and \(f_1(x) = g_1(x) = f(x) - p_0(x) \) on \(K \).

Therefore, the above inequalities can be rewritten as follows.

1. \(p_0(x) + p_1(x) < f(x) \) for all \(x \) in \(F \),
2. \(p_0(x) + p_1(x) \geq f_0(x) - \varepsilon/2 \) for all \(x \) in \(K \),
3. \(\|p_0\|_\infty \leq \|f_0\|_\infty \|q\|_\infty \) and \(\|p_1\|_\infty \leq \|f_1\|_\infty \|q\|_\infty \).

Note that \(\|f_1\|_\infty \leq \varepsilon/2 \).

Proceeding by induction, we get the sequence \(\{p_m\}, m = 0, 1, 2, \ldots, \) of bounded continuous \(n \)-potentials and a sequence \(\{f_m\}, m = 0, 1, 2, \ldots, \) of continuous functions such that

1. \(\Sigma_{i=0}^m p_i < f \) on \(F \) for every \(m \),
2. \(\Sigma_{i=0}^m p_i > f_0 - \varepsilon/2^m \) on \(K \) for every \(m \),
3. \(\|p_m\|_\infty \leq \|f_m\|_\infty \|q\|_\infty \) for \(m = 0, 1, 2, \ldots \).

Note that \(\|f_m\|_K < \varepsilon/2^m \) for \(m = 1, 2, 3, \ldots \).

Set \(p = \Sigma_{i=0}^\infty p_m \) on \(\Omega \). Then, it is clear that \(p \) is an \(n \)-superharmonic function and that \(p \leq f \) on \(F \) and \(p \geq f_0 \) on \(K \). By an analogue of Proposition 2.2.2 of [2], \(p \) is an \(n \)-potential on \(\Omega \). As \(\|p_m\|_\infty \leq \|f_m\|_K \|q\|_\infty \leq \varepsilon/2^m \|q\|_\infty \) for \(m \geq 1 \), \(\Sigma_{m=0}^\infty p_m(x) \) converges uniformly on \(\Omega \). Since each \(p_m \) is a continuous function, \(p \) is continuous on \(\Omega \), completing the proof.

The following corollary is an immediate consequence of the above theorem.

Corollary 13. (1) Every real-valued continuous function on \(K \) is the restriction to \(K \) of the difference of two positive continuous \(n \)-potentials on \(\Omega \).

(2) Every positive lower semicontinuous function on \(K \) is the restriction to \(K \) of an \(n \)-potential.

(3) If the constant function 1 is \(n \)-superharmonic on \(\Omega \), then every real-valued continuous function on \(K \) is the restriction to \(K \) of an \(n \)-superharmonic function on \(\Omega \).

Bibliography

Prime Computers, 500 Old Connecticut Path, Framingham, Massachusetts 01701

Current address: Digital Equipment Corporation, 550 King Street, LKG1-3/A06, Littleton, Massachusetts 01460-1289