Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Symmetrization and optimal control for elliptic equations


Authors: Charles Voas and Daniel Yaniro
Journal: Proc. Amer. Math. Soc. 99 (1987), 509-514
MSC: Primary 49B22; Secondary 35B37, 35J20
DOI: https://doi.org/10.1090/S0002-9939-1987-0875390-X
MathSciNet review: 875390
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider an optimal control problem where $ u(x)$ satisfies $ - \operatorname{div}(H(x)\nabla u) = 1$ in $ \Omega $ and $ H(x)$ is a control. We introduce the functional $ {J_\Omega }(H) = {\vert\Omega\vert^{ - 1}}\int\limits_\Omega {u(x)} dx$ and show using a symmetrization argument that if the distribution function of $ H$ is fixed, then $ {J_\Omega }(H)$ is largest when $ \Omega $ is a ball and $ H$ is radial and decreasing on radii.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49B22, 35B37, 35J20

Retrieve articles in all journals with MSC: 49B22, 35B37, 35J20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0875390-X
Article copyright: © Copyright 1987 American Mathematical Society