A NOTE ON THE BORSUK-ULAM THEOREM

DAVID GAULD

ABSTRACT. Let \mathcal{F} denote the set of all maps from S^n to \mathbb{R}^n topologized by the usual metric, and \mathcal{B} the set of all nonempty closed subsets of S^n invariant with respect to the antipodal map. Let $\beta: \mathcal{F} \to \mathcal{B}$ assign to each $f \in \mathcal{F}$ the set of all x for which $f(x) = f(-x)$. The largest topology on \mathcal{B} for which β is continuous is identified: it is the upper semifinite topology.

Let d denote the usual Pythagorean metric on \mathbb{R}^n or S^n. Denote by \mathcal{F} the set of all maps from S^n to \mathbb{R}^n and by \mathcal{B} the set of all nonempty closed subsets of S^n which are invariant with respect to the antipodal map of S^n. The Borsuk-Ulam theorem asserts that for each $f \in \mathcal{F}$ there is some point $x \in S^n$ for which $f(x) = f(-x)$; it is readily shown that the set of all such points is a member of \mathcal{B}.

This note considers the continuity of the function β.

Topologize \mathcal{F} using the metric derived from the usual metric on \mathbb{R}^n in the usual way, and \mathcal{B} by the upper semifinite topology. The upper semifinite topology, defined by Michael in [2] on the collection of all nonempty closed subsets of a topological space, has as basis $\{V^* : V$ is an open subset of $S^n\}$, where $V^* = \{C \in \mathcal{B} : C \subseteq V\}$. This topology is very weak; it is not even T_1.

THEOREM. The function $\beta: \mathcal{F} \to \mathcal{B}$ is continuous. Moreover when \mathcal{F} has the usual metric topology, the upper semifinite topology is the largest topology on \mathcal{B} for which β is continuous.

PROOF. Firstly it is shown that β is continuous. Suppose $f \in \mathcal{F}$ and V is an open subset of S^n with $\beta(f) \subseteq V$. Let

$$\varepsilon = \min\{d(f(x), f(-x)) : x \in S^n - V\}.$$

Then $\varepsilon > 0$ and if $g \in \mathcal{F}$ is within $\varepsilon/2$ of f, then $\beta(g) \subseteq V$. Thus $\beta^{-1}(V^\#)$ is a neighborhood of f in \mathcal{F}.

To show that the upper semifinite topology is the largest topology, let $\mathcal{U} \subseteq \mathcal{B}$ be such that $\beta^{-1}(\mathcal{U})$ is open. It will be shown that \mathcal{U} is open in the upper semifinite topology, i.e.

$$\forall C \subseteq \mathcal{U}, \exists \text{ open } V \subseteq S^n \text{ with } C \subseteq V \text{ and } V^\# \subseteq \mathcal{U}.$$

Let $C \subseteq \mathcal{U}$.

Received by the editors December 10, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 54H25; Secondary 54C35, 54C60.

Key words and phrases. Borsuk-Ulam theorem, graph topology, upper semifinite topology.
For each \(x \in S^n \), let \(\sigma_x : S^n \to \mathbb{R}^n \) be some stereographic projection from \(-x\) of the closed hemisphere centered at \(x \) onto \(B^n \) and if \(y \) is in the complementary hemisphere let \(\sigma_x(y) = -\sigma_x(-y) \). Then \(\sigma_x(y) = \sigma_x(-y) \) if and only if \(y = \pm x \).

For each \(x \in C \) define \(f_x : S^n \to \mathbb{R}^n \) by \(f_x(y) = d(y,C)\sigma_x(y) \). Then \(f_x \in \mathcal{F} \) and \(\beta(f_x) = C \) so \(f_x \in \beta^{-1}(\mathcal{U}) \). Thus \(\exists \varepsilon_x > 0 \) such that if \(g \in \mathcal{F} \) is within \(2\varepsilon_x \) of \(f_x \), then \(g \in \beta^{-1}(\mathcal{U}) \). Let

\[
U_x = \{ y \in S^n : d(y,C) < \varepsilon_x \}
\]

and choose \(\delta_x \in (0, 1/2) \) so that \(B(x; 2\delta_x) \subset U_x \), where \(B(x;r) \) denotes the open ball in \(S^n \) of radius \(r \). Let \(\{B(x_i; \delta_x_i) : i = 1, \ldots, m\} \) be a finite subcover of the open cover \(\{B(x; \delta_x) : x \in C\} \) of \(C \).

Set

\[
V = \bigcap_{i=1}^m U_{x_i} \cap \left[\bigcup_{i=1}^m B(x_i; \delta_x_i) \right].
\]

The set \(V \) is open and contains \(C \). Suppose \(D \in V^\# \). Since \(D \subset V \) and \(D \neq \emptyset \), there is an index \(i \) with \(D \cap B(x_i; \delta_x_i) \neq \emptyset \), say \(x \in D \cap B(x_i; \delta_x_i) \). Note also that \(D \subset U_{x_i} \). Define \(\varphi : S^n \to \mathbb{R} \) by

\[
\varphi(y) = \max\{d(y,C), \varepsilon_x\}
\]

and \(\psi : S^n \to \mathbb{R}^n \) by

\[
\psi(y) = \begin{cases}
\sigma_{x_i}(y) & \text{if } y \in S^n - B(\pm x_i; 2\delta_x_i), \\
0 & \text{if } y = \pm x, \\
\frac{d(\sigma_{x_i}(y), \sigma_{x_i}(\pm x))}{d(\sigma_{x_i}(z), \sigma_{x_i}(\pm x))} \sigma_{x_i}(z) & \text{if } y \in B(\pm x_i; 2\delta_x_i) - \{\pm x\}.
\end{cases}
\]

In the last line, \(z \in \partial B(\pm x_i; 2\delta_x_i) \) is chosen so that \(\sigma_{x_i}(\pm x), \sigma_{x_i}(y), \) and \(\sigma_{x_i}(z) \) are collinear and in that order. It is readily checked that \(\psi \) is continuous and that \(\psi(y) = \psi(-y) \) if and only if \(y = \pm x \).

Define \(g : S^n \to \mathbb{R}^n \) by

\[
g(y) = \frac{d(y, D)}{d(y, D) + d(y, S^n - U_{x_i})} \varphi(y)\psi(y).
\]

Then \(g \in \mathcal{F} \) and is within \(2\varepsilon_x \) of \(f_x \), so \(g \in \beta^{-1}(\mathcal{U}) \) and hence \(\beta(g) \in \mathcal{U} \). Since \(\beta(g) = D \) it follows that \(D \in \mathcal{U} \) so \(V^\# \subset \mathcal{U} \) as required. This completes the proof.

The theorem above may be compared with the results contained in [1], where cohomological bounds are obtained for sets derived from the Borsuk-Ulam sets of a parametrized family of maps.

It follows from the theorem that \(\beta \) is surjective, i.e. every nonempty closed subset of \(S^n \) which is invariant with respect to the antipodal map is the Borsuk-Ulam set of some map \(S^n \to \mathbb{R}^n \). This fact is comparable with Theorem 1 of [3].

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF AUCKLAND, AUCKLAND, NEW ZEALAND