Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Entropies of automorphisms of a topological Markov shift


Author: D. A. Lind
Journal: Proc. Amer. Math. Soc. 99 (1987), 589-595
MSC: Primary 54H20; Secondary 28D20, 54C70, 58F11
DOI: https://doi.org/10.1090/S0002-9939-1987-0875406-0
MathSciNet review: 875406
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \sigma $ be a mixing topological Markov shift, $ \lambda $ a weak Perron number, $ q\left( t \right)$ a polynomial with nonnegative integer coefficients, and $ r$ a non-negative rational. We construct a homeomorphism commuting with $ \sigma $ whose topological entropy is $ \log {\left[ {q\left( \lambda \right)q\left( {1/\lambda } \right)} \right]^r}$. These values are shown to include the logarithms of all weak Perron numbers, and are dense in the nonnegative reals.


References [Enhancements On Off] (What's this?)

  • [BK] M. Boyle and W. Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. (to appear). MR 887501 (88g:54065)
  • [BLR] M. Boyle, D. Lind and D. Rudolph, The automorphism group of a subshift of finite type, preprint, Universities of Maryland and Washington, 1986.
  • [C] E. Coven, Topological entropy of block maps, Proc. Amer. Math. Soc. 78 (1980), 590-594. MR 556638 (80m:54055)
  • [DGS] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math., vol. 527, Springer-Verlag, New York, 1976. MR 0457675 (56:15879)
  • [H] G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 0259881 (41:4510)
  • [L] D. Lind, The entropies of topological Markov shifts and a related class of algebraic integer, Ergodic Theory Dynamical Systems 4 (1984), 283-300. MR 766106 (86c:58092)
  • [MN] B. Marcus and S. Newhouse, Measures of maximal entropy for a class of skew products, Lecture Notes in Math., vol. 729, Springer-Verlag, New York, 1978, pp. 105-124. MR 550415 (80j:28030)
  • [R] J. Ryan, The shift and commutativity, Math. Systems Theory 6 (1978), 82-85. MR 0305376 (46:4506)
  • [Wa] J. Wagoner, Markov partitions and $ {K_2}$, preprint, University of California, Berkeley, 1985.
  • [Wi] R. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120-153; errata Ann. of Math. (2) 99 (1974), 380-381. MR 0331436 (48:9769)
  • [Wo] S. Wolfram, Universality and complexity in cellular automata, Phys. D 10 (1984), 1-35. MR 762650 (86k:68079)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 28D20, 54C70, 58F11

Retrieve articles in all journals with MSC: 54H20, 28D20, 54C70, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0875406-0
Keywords: Topological entropy, Perron number, automorphism group of a topological Markov shift
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society