UNCONDITIONAL BASES IN $L^2(0, a)$

SERGEI V. HRUSČEV

ABSTRACT. A method is given for producing unconditional bases in subspaces $K_\theta = H^2 \ominus \theta H^2$ of the Hardy space H^2, θ being an inner function in the upper half-plane. For $\theta = \exp(iaz)$ the space K_θ is the Fourier-Laplace transform of $L^2(0, a)$, which allows us to establish a necessary and sufficient condition for certain families of functions (including exponentials) to constitute unconditional bases in $L^2(0, a)$.

1. A family of nonzero vectors $\{e_n\}$ in a Hilbert space H is called an unconditional basis in H if every element x in H can be uniquely decomposed in an unconditionally convergent series

$$x = \sum_n \alpha_n e_n, \quad \alpha_n \in \mathbb{C}.$$

The Köthe-Toeplitz theorem says that a complete family $\{e_n\}$ is an unconditional basis iff for some c, $0 < c < 1$, the following "approximate Parseval identity" holds:

$$c \cdot \sum_n |\alpha_n|^2 \cdot \|e_n\|^2 \leq \left\| \sum_n \alpha_n e_n \right\|^2 \leq c^{-1} \sum_n |\lambda_n|^2 \cdot \|e_n\|^2$$

for every finite sequence $\{\alpha_n\}$ of complex numbers.

A classical example of an unconditional basis, in fact orthogonal, is given by the family of exponentials $\{e^{inx}\}_{n \in \mathbb{Z}}$, $H = L^2(0, 2\pi)$. Unconditional bases of exponentials $\{e^{i\lambda_n x}\}$ in $L^2(0, a)$ have been described in [1] under the assumption $\inf_n \text{Im} \lambda_n > -\infty$ ($\sup_n \text{Im} \lambda_n < +\infty$). The functions w satisfying the Muckenhoupt condition (A2) on the real line \mathbb{R},

$$\sup_{I \in \mathcal{I}} \left(\frac{1}{|I|} \int_I w \, dx \right) \cdot \left(\frac{1}{|I|} \int_I w^{-1} \, dx \right) < +\infty,$$

I being the family of finite intervals, play an important role in this description. It was observed later [2] that the theory of Hankel operators permits one to extend the result of [1] to families of reproducing kernels of the Hardy class H^2 in the upper half-plane \mathbb{C}_+ (see [3] for details). The methods developed in [1 and 3] can be applied to the description of the resonance frequencies of semi-infinite strings corresponding to unconditional bases of resonance states [4]. One more application
S. V. HRUSČEV

has been considered recently in [5] to investigate the unconditional basis property of \(\{x^{\beta-1}e_{1,\beta}(ix\lambda_n)\} \) in \(L^2(0,a) \). Here
\[
E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}
\]
is a Mittag-Leffler function [6]. In this paper the results of [5] are extended to more general families. The advantage of the approach presented is that it makes the arguments more transparent even in the case of exponentials (\(\beta = 1 \)).

2. Our main tool is Widom's criterion for invertibility of Toeplitz operators \(T_\varphi \) with unimodular symbols \(\varphi \). We recall that the Toeplitz operator \(T_\varphi \) with symbol \(\varphi \), \(\varphi \) being a bounded measurable function on \(\mathbb{R} \), \((\varphi \in L^\infty(\mathbb{R})) \) is defined by
\[
T_\varphi f = P_+(\varphi f), \quad f \in H^2.
\]
Here \(P_+ \) stands for the orthogonal projection in \(L^2(\mathbb{R}) \) onto \(H^2 \). We define the Hilbert transform \(\tilde{v} \) of \(v \in L^\infty(\mathbb{R}) \) as follows:
\[
\tilde{v}(x) = \frac{1}{\pi} \text{v.p.} \int \left\{ \frac{1}{x-t} + \frac{t}{1 + i t^2} \right\} v(t) \, dt.
\]
We state Widom's theorem in the form used in [3] (see Theorem 5). We say that a unimodular function \(\varphi \) is a Helson-Szegö function if \(T_\varphi \) is invertible. We denote by \(H^\infty \) the Hardy algebra in \(\mathbb{C}^+ \).

THEOREM (WIDOM [7]). Let \(\varphi \) be a unimodular function. Then the following are equivalent.
1. \(\varphi \) is a Helson-Szegö function.
2. \(\text{dist}_{L^\infty}(\varphi, H^\infty) < 1 \), \(\text{dist}(\overline{\varphi}, H^\infty) < 1 \).
3. There is an outer function \(f \in H^\infty \) such that \(\|\varphi - f\|_\infty < 1 \).
4. \(\varphi = \exp\{i(\overline{u} + v + c)\} \), where \(u, v \in L^\infty(\mathbb{R}) \), \(\|v\|_\infty < \pi/2 \), \(c \in \mathbb{R} \).
5. There are a constant \(\lambda \), \(|\lambda| = 1 \), and an outer function \(h \) with \(|h|^2 \) satisfying the Muckenhoupt condition \((A_2) \) on \(\mathbb{R} \) such that
\[
\varphi = \lambda \overline{h}/h.
\]

REMARK. Notice that \(T_\varphi \) is left-invertible for a unimodular \(\varphi \) iff \(\text{dist}(\varphi, H^\infty) < 1 \) (see [3]).

Widom’s theorem, as stated above, provides a simple proof of the following well-known lemma. We put \(z = x + iy \), \(P_z = \pi^{-1}y \cdot (x^2 + y^2)^{-1} \) and denote by \(P_z^* f \) the harmonic extension of \(f \) from \(\mathbb{R} \) to \(\mathbb{C}^+ \).

LEMMA 1. Let \(h \) be an outer function in \(\mathbb{C}^+ \). Then \(|h|^2 \) satisfies (1) on \(\mathbb{R} \) if and only if
\[
P_z |h|^2 \leq \text{const} \cdot |h(z)|^2, \quad P_z |h|^{-2} \leq \text{const} \cdot |h(z)|^{-2}.
\]

PROOF. If \(|h|^2 \) satisfies (1) then \(T_{h/h} \) is invertible and 2 of Widon's theorem implies \(\text{dist}(\overline{h} \cdot h^{-1}, H^\infty) < 1 \). It follows that there exist \(f \in H^\infty \) and \(q < 1 \) such that
\[
||h(x)||^2 - f(x) \cdot h^2(x) < q|h(x)|^2, \quad x \in \mathbb{R}.
\]
Since \(P_z f h^2 = f(z) \cdot h^2(z) \) and \(||f||_\infty < 2 \), we obtain
\[
P_z |h|^2 \leq q \cdot P_z |h|^2 + 2|h(z)|^2, \quad \text{i.e.} \quad P_z |h|^2 \leq 2(1-q)^{-1} \cdot |h(z)|^2.
\]
Similarly one can prove the second inequality. The converse is a trivial estimate of the Poisson kernel. \(\square \)

A sequence \(\{\lambda_n\} \) in \(\mathbb{C}_+ \) is said to be interpolating if for every bounded sequence \(\{\alpha_n\} \) there is \(f \in H^\infty \) such that \(f(\lambda_n) = \alpha_n \). The Carleson theorem [8] says that \(\{\lambda_n\} \) is interpolating iff
\[
\inf_n \prod_{k \neq n} \left| \frac{\lambda_k - \lambda_n}{\lambda_k - \lambda_n} \right| > 0. \tag{2}
\]
Clearly, (2) implies the Blaschke condition in \(\mathbb{C}_+ \) which allows one to consider the Blaschke product
\[
B = \prod_n \varepsilon_n \frac{z - \lambda_n}{z - \lambda_n},
\]
where the unimodular constants \(\varepsilon_n \) are chosen so as to provide the convergence of the product in \(\mathbb{C}_+ \).

Any inner function \(\theta \) in \(\mathbb{C}_+ \) generates a subspace \(K_\theta = H^2 \ominus \theta H^2 \) of \(H^2 \). We denote by \(P_\theta \) the orthogonal projection onto \(K_\theta \). Clearly \(P_\theta = \theta(I - P_+)\theta \).

Theorem 1. Let \(h \) be an outer function in \(\mathbb{C}_+ \) satisfying \(|h|^2 \in (1) \). \(\theta \) an inner function in \(\mathbb{C}_+ \), \(\{\lambda_n\} \) a sequence in \(\mathbb{C}_+ \) such that
\[
\sup_n |\theta(\lambda_n)| < 1. \tag{3}
\]
Then \(\{P_\theta(h(z - \lambda_n)^{-1})\} \) is an unconditional basis in \(K_\theta \) if and only if
(a) \(\{\lambda_n\} \) is an interpolating sequence; and
(b) \(h \cdot h^{-1} \cdot B \theta \) is a Helson-Szegö function, \(B \) being the Blaschke product associated with \(\{\lambda_n\} \).

3. An application. We observe first that \(h(z - \bar{\lambda}_n)^{-1} \in H^2 \) in view of Lemma 1. Now we show how to deduce the main result of [5] from this theorem. Let \(\mathcal{E}_\alpha \) be the set of entire functions with conjugate indicator diagram \([0, i\alpha], \beta \in \mathbb{R}, \{\lambda_n\} \) a sequence satisfying \(\inf_n \text{Im} \lambda_n > 0, B \) the Blaschke product associated with \(\{\lambda_n\}, \theta^\alpha(z) = \exp(i\alpha z) \).

Theorem (Gubreev [5]). For \(\beta \in (1/2, 3/2) \) the family \(\{x^{\beta-1} E_{1, \beta}(i x \lambda_n)\} \)
is an unconditional basis in \(L^2(0, a) \) if and only if
(a) \(\{\lambda_n\} \) is an interpolating sequence; and
(b) there is an entire function \(F \) in \(\mathcal{E}_\alpha \) with simple zeros \(\{\lambda_n\} \) such that
\[
|x|^{2(\beta-1)} |F(x)|^2 \text{ satisfies the Muckenhoupt condition.}
\]

Proof. This theorem is in fact a partial case of Theorem 1 with \(h = z^{1-\beta} \).
To see this we put \(x_+ = \max(x, 0) \) and note that \((x_+^{\mu-1}/\Gamma(\mu)) \ast (x_+^{\mu-1}/\Gamma(\mu)) = x_+^{\mu+\mu-1}/\Gamma(\alpha + \mu) \) (see [9]). Hence, applying the operator of fractional integration
\[
I_\alpha f(x) \overset{\text{def}}{=} \frac{x_+^{\alpha-1}}{\Gamma(\alpha)} \ast f = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) \, dt
\]
with $\alpha = \beta - 1$ to the Taylor series of $\exp(i\lambda x)$, we obtain $I_{\rho-1}\exp(i\lambda x) = x^{\beta-1}E_{1,\beta}(ix\lambda)$. Next,

$$ \frac{1}{\Gamma(\beta)} \int_0^\infty x^{\beta-1}e^{i\beta x} \, dx = e^{i\beta\pi/2}z^{-\beta}, \quad z \in \mathbb{C}_+ $$

(see [9]), which yields the following formula for the Fourier-Laplace transform of $x^{\beta-1}E_{1,\beta}(ix\lambda)$, $\lambda \in \mathbb{C}_+$:

$$ \int_0^\infty x^{\beta-1}E_{1,\beta}(ix\lambda)e^{i\beta x} \, dx = e^{i\beta\pi/2}(\lambda + z)^{-1} \cdot z^{1-\beta}. $$

The Fourier-Laplace transform $f \to \hat{f}$ is an isometry of $L^2(0, +\infty)$ onto H^2 which maps $L^2(0, a)$ onto K_θ. The function $z^{1-\beta}$ is outer in \mathbb{C}_+ and $|x|^{2(1-\beta)}$ satisfies (1) for $\beta \in \left(\frac{1}{2}, \frac{3}{2}\right)$. Therefore we can put $h = zx^{-\beta}$ in Theorem 1.

To finish the proof we need the following lemma. For an outer function h satisfying $|h|^2 \in (1)$ we consider the class $M_{h,a}$ of entire functions $F \in \mathcal{E}_a$ such that $|\mathcal{E}_{a}^{-1}| \leq 1$.

Lemma 2. Let $\{\lambda_n\}$ be a Blaschke sequence in \mathbb{C}_+ with $\inf \text{Im} \lambda_n > 0$. Then the following are equivalent:

1. There is an $F \in M_{h,a}$ with simple zeros $\{\lambda_n\}$.
2. $h \cdot h^{-1}B_{\theta}a$ is a Helson-Szego function.

A proof of the lemma follows the same line as the proof of Theorem 1.2 (Part III of [3]), which deals with the case $h \equiv 1$. \qed

For $\beta \leq \frac{1}{2}$ the family $\{x^{\beta-1}E_{1,\beta}(ix\lambda)\}$ is not a basis in $L^2(0, a)$ since no element of the family belongs to $L^2(0, a)$. To see that the case $\beta \geq \frac{3}{2}$ is also impossible is more difficult and we refer the interested reader to [5].

4. Proof of Theorem 1. Let N and M be linear subspaces of a linear space H. We say that H is a direct sum of N and M (notationally $H = N + M$) if $N \cap M = \{0\}$ and $H = N + M$.

We begin with two geometrical lemmas.

Lemma 3. Let N and M be closed subspaces of a Banach space H and T be a bounded operator from H to a Banach space X such that $\text{Ker} T = N$ and $TH = X$. Then $H = N + M$ if and only if T maps M isomorphically onto X.

Proof. If $H = N + M$ then $T : M \to X$ is an isomorphism by the Banach theorem. Let now T map M isomorphically onto X. Pick any $h \in H$ and consider $m = (T|M)^{-1}Th \in M$. Then obviously $n = h - m \in \text{Ker} T = N$, i.e. $h = n + m$. \qed

Lemma 4. The orthogonal projection P_G onto a subspace G of a Hilbert space H maps a subspace F isomorphically onto G if and only if $H = F \perp G^\perp$, where $G^\perp = H \ominus G$.

Proof. Put $X = G$, $T = P_G$ and apply Lemma 3. \qed

We are going to apply Lemma 3 with T being a Toeplitz operator. The following lemma justifies these applications.
LEMMA 5. Let \(\varphi \) be a Helson-Szegö function and \(I \) an arbitrary inner function. Then \(T_{\varphi I}(H^2) = H^2 \).

PROOF. The desired equality is an immediate consequence of the factorization \(T_{\varphi I} = T_I T_{\varphi} \).

LEMMA 6. Let \(h \) be an outer function and \(\{\lambda_n\} \) an arbitrary Blaschke sequence in \(C_+ \). Let \(|h|^2 \in (1) \) and \(\theta \) be an inner function. Then \(P_\theta \) is an isomorphism from the closed linear span of \(\{h(z - \lambda_n)^{-1}\} \) onto \(K_\theta \) if and only if \(\frac{h}{h^{-1}} \cdot B \cdot \theta \) is a Helson-Szegö function, \(B \) being the Blaschke product with zeros \(\{\lambda_n\} \).

PROOF. Let \(F \) be the closed linear span of \(\{h(z - \lambda_n)^{-1}\} \) and \(G = K_\theta \). By Lemma 4 the projection \(P_\theta \) maps \(F \) isomorphically onto \(G \) iff \(H^2 = F + G \). Put now \(N = F, M = G^\perp = \theta H^2, X = H = H^2, T = T_\frac{h}{h^{-1}}B \) in Lemma 3. Lemma 5 guarantees that \(T_{\frac{h}{h^{-1}}B}(H^2) = H^2 \). To check that \(\ker T_{\frac{h}{h^{-1}}B} = F \) we observe that \(T_{\frac{h}{h^{-1}}B} = T_B \cdot T_{\frac{h}{h^{-1}}} \). This yields \(\ker T_{\frac{h}{h^{-1}}B} = (T_{\frac{h}{h^{-1}}})^{-1}(\ker T_B) \). Now \(\ker T_B = K_B = \text{span}\{z - \lambda_n\}^{-1}\}. Besides, we have

\[
\frac{h}{h^{-1}}(z - \lambda_n)^{-1} = P_\frac{h}{h^{-1}}(z - \lambda_n)^{-1} = \frac{h(\lambda_n)}{h(\lambda_n)}(z - \lambda_n)^{-1},
\]

which implies the desired conclusion \(\ker T = F \), since \(T_{\frac{h}{h^{-1}}} \) is invertible.

Lemma 3 says that \(H^2 = F + G \) iff \(T_{\frac{h}{h^{-1}}B} : G^\perp \to H^2 \) is an isomorphism. The latter is, clearly, equivalent to the fact that \((h/h) B \theta \) is a Helson-Szegö function. □

Let (a) and (b) of Theorem 1 hold. Then (a) implies that \(\{z - \lambda_n\}^{-1}\} \) is an unconditional basis in \(K_B \) [10] (see also [3]). Since \(T_{\frac{h}{h^{-1}}} \) is invertible, it follows from (4) that \(\{h(z - \lambda_n)^{-1}\} \) is an unconditional basis in its span \(F \). Now (b) and Lemma 6 imply that \(P_\theta \) maps \(F \) isomorphically onto \(K_\theta \), which proves the theorem in one direction.

Let \(\{P_\theta(h(z - \lambda_n)^{-1})\} \) be an unconditional basis in \(K_\theta \). We recall that a family \(\{e_n\} \) of vectors of a Banach space is called uniformly minimal if there is a biorthogonal family \(\{f_n\} \) of bounded functionals \(\langle e_n, f_m \rangle = \delta_{nm} \) such that \(\sup_n \|e_n\| \cdot \|f_n\| < \infty \). If \(\{e_n\} \) is an unconditional basis then it is uniformly minimal. It is clear that if \(T_{e_n^*} = e_n \) and \(\|e_n\| \geq c \cdot ||e_n^*|| \) then \(\{e_n^*\} \) is also uniformly minimal. Set \(f_n^* = T^* f_n \). Then \(\|e_n^*\| \cdot \|f_n^*\| < c^{-1} \cdot \|T^*\| \cdot ||e_n|| \cdot ||f_n|| \).

LEMMA 7. If \(\sup_n ||\theta(\lambda_n)|| < 1 \) then there is a positive constant \(c \) such that

\[
\|P_\theta(h(z - \lambda_n)^{-1})\| \geq c \|h(z - \lambda_n)^{-1}\|.
\]

PROOF. We have

\[
\|P_\theta(h(z - \lambda_n)^{-1})\| = \|(I - P_+) (h \theta)(x - \lambda_n)^{-1})\|_{L^2} = \|P_+ \theta h(x - \lambda_n)^{-1}\|_{L^2},
\]

\[
= \left| \frac{\frac{h}{h^{-1}} \cdot \theta(x) - \theta(\lambda_n)}{x - \lambda_n} \right| \left(\|T_{\frac{h}{h^{-1}}B}(x)\|^{-1} \cdot \|\theta(x) - \theta(\lambda_n)\| \right),
\]

\[
\geq \left(1 - \sup_n ||\theta(\lambda_n)|| \right) \left(\|T_{\frac{h}{h^{-1}}B}(x)\|^{-1} \cdot ||h(x - \lambda_n)^{-1}\||_{H^2} \right).
\]

Since \(T_{\frac{h}{h^{-1}}} \) is invertible, (4) implies that \(\{(z - \lambda_n)^{-1}\} \) is uniformly minimal too. It is well known that \(\{B(z - \lambda_n)^{-1}(iB'(\lambda_n))^{-1}\} \) is a biorthogonal family for
\{(z - \lambda_n)^{-1}\}, which yields \(\inf_n |B'(\lambda_n)|/\text{Im } \lambda_n > 0\) and therefore \{\lambda_n\} is interpolating. Then \{(z - \lambda_n)^{-1}\} is an unconditional basis in \(K_B\). From (4) we obtain that \(\{h(z - \lambda_n)^{-1}\}\) is an unconditional basis in \(F\) because \(T_{h^{-1}\theta}^{\theta}\) is invertible. Lemma 7 says that \(\rho_\theta\) does not distort the elements \(h(z - \lambda_n)^{-1}\). This clearly implies that \(\rho_\theta : F \rightarrow K_\theta\) is an isomorphism. Lemma 6 guarantees that \(\bar{h} \cdot h^{-1} \cdot \bar{\theta}\) is a Helson-Szegö function. □

REFERENCES

LENINGRAD BRANCH OF THE V. A. STEKLOV MATHEMATICAL INSTITUTE, FONTANKA 27, 191011 LENINGRAD D-11, USSR