Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Unconditional bases in $ L\sp 2(0,a)$

Author: Sergeĭ V. Hruščëv
Journal: Proc. Amer. Math. Soc. 99 (1987), 651-656
MSC: Primary 46J15; Secondary 46E30, 47B35
MathSciNet review: 877034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A method is given for producing unconditional bases in subspaces $ {K_\theta } = {H^2} \ominus \theta {H^2}$ of the Hardy space $ {H^2},\theta $ being an inner function in the upper half-plane. For $ \theta = \exp {\text{(}}iaz)$ the space $ {K_\theta }$ is the Fourier-Laplace transform of $ {L^2}(0,a)$, which allows us to establish a necessary and sufficient condition for certain families of functions (including exponentials) to constitute unconditional bases in $ {L^2}(0,a)$.

References [Enhancements On Off] (What's this?)

  • [1] B. S. Pavlov, Basicity of an exponential system and Muckenhoupt condition, Soviet Math. Dokl. 20 (1979), 655-659.
  • [2] N. K. Nikol'skiĭ, Bases of exponential functions and values of reproducing kernels, Soviet Math. Dokl. 21 (1980), 937-941.
  • [3] S. V. Hruščëv, N. K. Nikol′skiĭ, and B. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory (Leningrad, 1979/1980) Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 214–335. MR 643384
  • [4] S. V. Hruščev, The Regge problem for strings, unconditionally convergent eigenfunction expansions, and unconditional bases of exponentials in 𝐿²(-𝑇,𝑇), J. Operator Theory 14 (1985), no. 1, 67–85. MR 789378
  • [5] G. M. Gubreev, A basis property of families of the Mittag-Leffler functions, Dzhrbashyan's transform, and the Muckenhoupt condition, Funktsional. Anal. i Prilozhen. 20:3 (1986).
  • [6] A. Erdélyi, Higher transcendental functions, vol. 3 (Bateman Manuscript Project), McGraw-Hill, New York.
  • [7] Harold Widom, Inversion of Toeplitz matrices. II, Illinois J. Math. 4 (1960), 88–99. MR 0130572
  • [8] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • [9] I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Translated by Eugene Saletan, Academic Press, New York-London, 1964. MR 0166596
  • [10] N. K. Nikol'skiĭ and B. S. Pavlov, Eigenvector bases, characteristic functions and interpolation problems in Hardy's $ {H^2}$-space, Soviet Math. Dokl. 10 (1969), 138-141.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J15, 46E30, 47B35

Retrieve articles in all journals with MSC: 46J15, 46E30, 47B35

Additional Information

Keywords: Toeplitz operator, Muckenhoupt condition, unconditional bases
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society