Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A sampling theorem for analytic functions


Authors: J. L. Schiff and W. J. Walker
Journal: Proc. Amer. Math. Soc. 99 (1987), 737-740
MSC: Primary 30B10; Secondary 30E05, 65E05
DOI: https://doi.org/10.1090/S0002-9939-1987-0877049-1
MathSciNet review: 877049
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An analogue to the Shannon sampling theorem is obtained for an analytic function sampled on a circle.


References [Enhancements On Off] (What's this?)

  • [1] J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 45-89. MR 766960 (86k:42045)
  • [2] H. Niederreiter, Quasi-monte carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041. MR 508447 (80d:65016)
  • [3] B. L. Van der Waerden, Modern algebra, vol. 1, Ungar, New York, 1953.
  • [4] J. L. Walsh, A mean value theorem for polynomials and harmonic polynomials, Bull. Amer. Math. Soc. 42 (1936), 923-930. MR 1563465

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30B10, 30E05, 65E05

Retrieve articles in all journals with MSC: 30B10, 30E05, 65E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0877049-1
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society