ON TOTALLY REAL 3-DIMENSIONAL SUBMANIFOLDS OF THE NEARLY KAHLER 6-SPHERE

F. DILLEN, B. OPOZDA, L. VERSTRAELEN AND L. VRANCKEN

Abstract. Let M be a compact 3-dimensional totally real submanifold of the nearly Kaehler 6-dimensional unit sphere. Let K be the sectional curvature function of M. Then, if $K > 1/16$, M is a totally geodesic submanifold (and $K = 1$).

1. Introduction. On a 6-dimensional unit sphere $S^6(1)$, one can construct a nearly Kaehler structure J making use of the Cayley number system. We recall this construction in §3.

In this paper we study 3-dimensional totally real submanifolds of $S^6(1)$. The definition and the basic formulas for such manifolds are given in §4. N. Ejiri [E] proved the following: If a 3-dimensional totally real submanifold of $S^6(1)$ has constant curvature K, then $K = 1$ or $K = \frac{1}{16}$. The main purpose of this article is the following theorem, which will be proved in §5.

Theorem. Let M be a compact 3-dimensional totally real submanifold of $S^6(1)$. If all sectional curvatures K of M satisfy $\frac{1}{16} < K \leq 1$, then $K = 1$ on M.

The proof is based on integral formulas for Riemannian manifolds of A. Ros [R], which are given in §2.

2. Integral formulas. Let M be a compact Riemannian manifold, UM its unit tangent bundle, and UM_p the fiber of UM over a point p of M. We denote by dp, du, and du_p respectively the canonical measures on M, UM, and UM_p.

For any continuous function $f: UM \to \mathbb{R}$ one has

$$\int_{UM} f du = \int_M \left(\int_{UM_p} f du_p \right) dp.$$

Let T be any k-covariant tensor field on M. Then the integral formulas state that

$$\int_{UM} (\nabla T)(u, u, u, \ldots, u) du = 0$$

and

$$\int_{UM} \sum_i (\nabla T)(e_i, e_i, u, u, \ldots, u) du = 0,$$

Received by the editors February 5, 1986.
1980 Mathematics Subject Classification. (1985 Revision) Primary 53C40.
The first and fourth authors are authors Aspirant Navorser N.F.W.O. (Belgium).

$©1987$ American Mathematical Society
$0002-9939/87$ $1.00 + $0.25 per page

741
where \(\{ e_i \}_{i=1}^n \) is an orthonormal basis of \(TM \), the tangent bundle over \(M \), and \(\nabla \) denotes the Levi Civita connection of \(M \).

3. The nearly Kaehler \(S^6(1) \)

Let \(e_0, e_1, \ldots, e_7 \) be the standard basis of \(\mathbb{R}^8 \). Then each point \(\alpha \) of \(\mathbb{R}^8 \) can be written in a unique way as \(\alpha = Ae_0 + x \), where \(A \in \mathbb{R} \) and \(x \) is a linear combination of \(e_1, \ldots, e_7 \). \(\alpha \) can be viewed as a Cayley number, and is called purely imaginary when \(A = 0 \). For any pair of purely imaginary \(x \) and \(y \), we consider the multiplication \(\cdot \) given by

\[
x \cdot y = -\langle x, y \rangle e_0 + x \times y,
\]

where \(\langle \quad, \quad \rangle \) is the standard scalar product on \(\mathbb{R}^8 \) and \(x \times y \) is defined by the following multiplication table for \(e_j \times e_k \):

<table>
<thead>
<tr>
<th>(j/k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>(e_3)</td>
<td>(-e_2)</td>
<td>(e_5)</td>
<td>(-e_4)</td>
<td>(e_7)</td>
<td>(-e_6)</td>
</tr>
<tr>
<td>2</td>
<td>(-e_3)</td>
<td>0</td>
<td>(e_1)</td>
<td>(e_6)</td>
<td>(-e_7)</td>
<td>(-e_4)</td>
<td>(e_5)</td>
</tr>
<tr>
<td>3</td>
<td>(e_2)</td>
<td>(-e_1)</td>
<td>0</td>
<td>(-e_7)</td>
<td>(-e_6)</td>
<td>(e_5)</td>
<td>(e_4)</td>
</tr>
<tr>
<td>4</td>
<td>(-e_5)</td>
<td>(-e_6)</td>
<td>(e_7)</td>
<td>0</td>
<td>(e_1)</td>
<td>(e_2)</td>
<td>(-e_3)</td>
</tr>
<tr>
<td>5</td>
<td>(e_4)</td>
<td>(e_7)</td>
<td>(e_6)</td>
<td>(-e_1)</td>
<td>0</td>
<td>(-e_3)</td>
<td>(-e_2)</td>
</tr>
<tr>
<td>6</td>
<td>(-e_7)</td>
<td>(e_4)</td>
<td>(-e_5)</td>
<td>(-e_2)</td>
<td>(e_3)</td>
<td>0</td>
<td>(e_1)</td>
</tr>
<tr>
<td>7</td>
<td>(e_6)</td>
<td>(-e_5)</td>
<td>(-e_4)</td>
<td>(e_3)</td>
<td>(e_2)</td>
<td>(-e_1)</td>
<td>0</td>
</tr>
</tbody>
</table>

For two Cayley numbers \(\alpha = Ae_0 + x \) and \(\beta = Be_0 + y \), the Cayley multiplication \(\cdot \), which makes \(\mathbb{R}^8 \) the Cayley algebra \(\mathcal{C} \), is defined by

\[
\alpha \cdot \beta = ABe_0 + Ay + Bx + x \cdot y.
\]

We recall that the multiplication \(\cdot \) of \(\mathcal{C} \) is neither commutative nor associative. The set \(\mathcal{C}_+ \) of all purely imaginary Cayley numbers clearly can be viewed as a 7-dimensional linear subspace \(\mathbb{R}^7 \) of \(\mathbb{R}^8 \). In \(\mathcal{C}_+ \) we consider the unit hypersphere which is centered at the origin:

\[
S^6(1) = \{ x \in \mathcal{C}_+ | \langle x, x \rangle = 1 \}.
\]

Then the tangent space \(T_xS^6 \) of \(S^6(1) \) at a point \(x \) may be identified with the affine subspace of \(\mathcal{C}_+ \) which is orthogonal to \(x \).

On \(S^6(1) \) we now define a \((1, 1) \)-tensor field \(J \) by putting

\[
J_U = x \times U,
\]

where \(x \in S^6(1) \) and \(U \in T_xS^6 \). This tensor field is well defined (i.e., \(J_U \in T_xS^6 \)) and determines an almost complex structure on \(S^6(1) \), i.e. \(J^2 = -Id \), where \(Id \) is the identity transformation [F]. The compact simple Lie group \(G_2 \) is the group of automorphisms of \(\mathcal{C} \) and acts transitively on \(S^6(1) \) and preserves both \(J \) and the standard metric on \(S^6(1) \) [FI].

Further, let \(G \) be the \((2, 1) \)-tensor field on \(S^6(1) \) defined by

\[
(3.1) \quad G(X, Y) = (\tilde{\nabla}_X J)Y,
\]

where \(X, Y \in \mathfrak{X}(S^6) \) and where \(\tilde{\nabla} \) is the Levi Civita connection on \(S^6(1) \). This tensor field has the following properties:

\[
(3.2) \quad G(X, X) = 0,
\]
TOTALLY REAL 3-DIMENSIONAL SUBMANIFOLDS

(3.3) \[G(X, Y) + G(Y, X) = 0, \]
(3.4) \[G(X, JY) + JG(X, Y) = 0, \]
(3.5) \[\langle \tilde{\nabla}_X G(Y, Z) \rangle = \langle Y, JZ \rangle X + \langle X, Z \rangle JY - \langle X, Y \rangle JZ, \]
(3.6) \[\langle G(X, Y), Z \rangle + \langle G(X, Z), Y \rangle = 0, \]
(3.7) \[\langle G(X, Y), G(Z, W) \rangle = \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle \]
\[+ \langle JX, Z \rangle \langle Y, JW \rangle - \langle JX, W \rangle \langle Y, JZ \rangle, \]
where \(X, Y, Z, W \in \mathcal{F}(S^6) \). We recall that (3.2) means that the structure \(J \) is nearly Kaehler, i.e. \(\forall X \in \mathcal{F}(S^6): (\tilde{\nabla}_X J) X = 0. \)

4. Totally real submanifolds of \(S^6 \). A Riemannian manifold \(M \), isometrically immersed in \(S^6 \), is called a totally real submanifold of \(S^6 \) if \(J(TM) \subseteq T^\perp M \), where \(T^\perp M \) is the normal bundle of \(M \) in \(S^6 \). Then, we have \(\dim M \leq 3 \). In this paper we consider the case \(\dim M = 3 \). In [E] Ejiri proved that a 3-dimensional totally real submanifold of \(S^6 \) is orientable and minimal, and that \(G(X, Y) \) is orthogonal to \(M \) for \(X, Y \in \mathcal{F}(M) \). We denote the Levi Civita connection of \(M \) by \(\nabla \). The formulas of Gauss and Weingarten are then given by

\[\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y) \] (4.1)

and

\[\tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi, \] (4.2)

where \(X \) and \(Y \) are vector fields on \(M \) and \(\xi \) is a normal vector field on \(M \). The second fundamental form \(h \) is related to \(A_{\xi} \) by

\[\langle h(X, Y), \xi \rangle = \langle A_{\xi} X, Y \rangle. \] (4.3)

From (4.1) and (4.2) we find

\[D_X (JY) = G(X, Y) + J\nabla_X Y \] (4.4)

and

\[A_{JX} Y = -Jh(X, Y). \] (4.5)

If we denote the curvature tensors of \(\nabla \) and \(D \) by \(R \) and \(R^D \), respectively, then the equations of Gauss, Codazzi, and Ricci are given by

\[R(X, Y, Z, W) = \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle \]
\[+ \langle h(X, Z), h(Y, W) \rangle - \langle h(X, W), h(Y, Z) \rangle, \] (4.6)

(\[\nabla h)(X, Y, Z) = (\nabla h)(Y, X, Z), \] (4.7)

\[\langle R^D(X, Y) \xi, \mu \rangle = \langle [A_{\xi}, A_{\mu}] X, Y \rangle, \] (4.8)

where \(X, Y, Z, W \in \mathcal{F}(M) \), \(\xi \) and \(\mu \) are normal vector fields, and \(\nabla h \) is defined by

\[\nabla h(X, Y, Z) = D_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z). \]

From (4.5), (4.6), and (4.8) we obtain

\[\langle R^D(X, Y) JZ, JW \rangle = \langle R(X, Y) Z, W \rangle + \langle Z, X \rangle \langle Y, W \rangle - \langle Z, Y \rangle \langle X, W \rangle. \] (4.9)
We also define $\nabla^2 h$ by

$$
- \nabla h(Y, \nabla_X Z, W) - h(Y, Z, \nabla_X W).
$$

Then $\nabla^2 h$ satisfies the following equation:

$$
- h(R(X, Y)Z, W) - h(Z, R(X, Y)W).
$$

5. Proof of the theorem. In this section, X, Y, Z, \ldots denote tangent vector fields on a 3-dimensional totally real submanifold M of S^6, with second fundamental tensor h. Then by straightforward computations one may prove the following.

Lemma 1.

(a) $\langle h(X, Y), JZ \rangle = \langle h(X, Z), JY \rangle$,

(b) $\langle (\nabla h)(X, Y, Z), JW \rangle = \langle (\nabla h)(X, Y, W), JZ \rangle - \langle h(Y, Z), G(X, W) \rangle
- \langle h(Y, W), G(X, Z) \rangle$,

(c) $\langle (\nabla^2 h)(X, Y, Z, W), JU \rangle = \langle (\nabla^2 h)(X, Y, Z, U), JW \rangle
- \langle (\nabla h)(X, Z, W), G(Y, U) \rangle + \langle (\nabla h)(X, Z, U), G(Y, W) \rangle
- \langle h(Z, W), (\tilde{\nabla} G)(X, Y, U) \rangle + \langle h(Z, U), (\tilde{\nabla} G)(X, Y, W) \rangle
+ \langle (\nabla h)(Y, Z, W), G(X, U) \rangle - \langle \nabla h(Y, Z, W), G(X, U) \rangle$.

Now let $v \in UM_p$, $p \in M$. If e_2 and e_3 are orthonormal vectors in UM_p, orthogonal to v, then we can consider $\{e_2, e_3\}$ as an orthonormal basis of $T_v(UM_p)$. We remark that $\{v, e_2, e_3\}$ is an orthonormal basis of $T_p M$. We can choose e_3 such that $G(v, e_2) = J e_3$, $G(e_2, e_3) = J v$, and $G(e_3, v) = e_2$ (cf. [E]). If we denote the Laplacian of $UM_p \equiv S^2$ by Δ, then $\Delta f = e_2 e_2 f + e_3 e_3 f$, where f is a differentiable function on UM_p.

Lemma 2.

$$
3 \int_{UM_p} \| h(v, v) \|^2 = 7 \int_{UM_p} \langle h(v, v), Jv \rangle^2.
$$

Proof. Define a function f on UM_p, $p \in M$, by $f(v) = \langle h(v, v), Jv \rangle^2$. Using Lemma 1(a) and the minimality of M we can prove that

$$
(\Delta f)(v) = -42 f(v) + 18 \| h(v, v) \|^2.
$$

Integrating this completes the proof. \[\square\]

Lemma 3.

$$
\int_{UM} \sum_{i=1}^3 \langle (\nabla h)(e_i, v, v), Jv \rangle \langle G(v, e_i), h(v, v) \rangle = \frac{1}{3} \int_{UM} \langle h(v, v), Jv \rangle^2,
$$

where $\{e_1, e_2, e_3\}$ is an arbitrary orthonormal basis of TM.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
PROOF. Define the covariant tensor field T_1 by

$$T_1(X_1, X_2, \ldots, X_7) = \langle G(X_1, X_2), h(X_3, X_4) \rangle \langle h(X_5, X_6), JX_7 \rangle.$$

Then

$$\int_{U_M} \sum_{i=1}^{3} \langle \nabla T_1 \rangle (e_i, v, v, v, v, v, v) = 0. \tag{5.1}$$

To compute $\sum_{i=1}^{3} \langle \nabla T_1 \rangle (e_i, v, v, v, v, v, v)$, we can choose an orthonormal basis $\{e_1, e_2, e_3\}$ such that $e_1 = v$, $G(e_1, e_2) = Je_3$, $G(e_2, e_3) = Je_1$, and $G(e_3, e_1) = Je_2$. This is allowed because $\sum_{i=1}^{3} \langle \nabla T_1 \rangle (e_i, e_i, v, v, v, v, v, v)$ does not depend on the choice of the basis. (Similar argumentations will be used through this paper, without mentioning it.) Since

$$\sum_{i=1}^{3} \langle G(e_i, v) \rangle \langle (\nabla h)(e_i, v, v) \rangle = \langle h(v, v), Jv \rangle, \tag{5.2}$$

we find that

$$\sum_{i=1}^{3} \langle \nabla T_1 \rangle (e_i, e_i, v, v, v, v, v) = \|h(v, v)\|^2 - 2 \langle h(v, v), Jv \rangle^2$$

$$+ \sum_{i=3}^{3} \langle (\nabla h)(e_i, v, v), Jv \rangle \langle G(e_i, v), h(v, v) \rangle.$$

Lemma 3 then follows from (5.1) and Lemma 2. \qed

Because of Lemma 1(b), we have

$$\| (\nabla h)(v, v, v) \|^2 = \sum_{i=1}^{3} \langle (\nabla h)(e_i, v, v), Jv \rangle^2$$

$$- 2 \sum_{i=1}^{3} \langle (\nabla h)(v, v, e_i), Jv \rangle \langle h(v, v), G(v, e_i) \rangle$$

$$+ \|h(v, v)\|^2 - \langle h(v, v), Jv \rangle^2.$$

Integrating this and using Lemmas 2 and 3, we also obtain the following.

Lemma 4.

$$\int_{U_M} \| (\nabla h)(v, v, v) \|^2$$

$$= \int_{U_M} \sum_{i=1}^{3} \langle (\nabla h)(e_i, v, v), Jv \rangle^2 + \frac{2}{3} \int_{U_M} \langle h(v, v), Jv \rangle^2. \tag{\text{\textdagger}}$$

Lemma 5.

$$\int_{U_M} \sum_{i=1}^{3} \langle (\nabla h)(e_i, v, v), Jv \rangle^2 = \frac{9}{4} \int_{U_M} \langle (\nabla h)(v, v, v), Jv \rangle^2$$

$$+ \frac{1}{12} \int_{U_M} \langle h(v, v), Jv \rangle^2.$$
Proof. Define the function h on UM_p, $p \in M$, by $h(v) = \langle (\nabla h)(v, v, v), Jv \rangle^2$. Then we obtain

$$(\Delta h)(v) = -72h(v) + 2\|(\nabla h)(v, v, v)\|^2 + 30\sum_{i=1}^{3} \langle (\nabla h)(e_i, v, v), Jv \rangle^2$$

$$-12\sum_{i=1}^{3} \langle \nabla h(e_i, v, v), Jv \rangle \langle G(v, e_i), h(v, v) \rangle.$$

Integrating this over UM, using Lemmas 3 and 4, we obtain Lemma 5. □

Combining Lemmas 4 and 5 we obtain

Lemma 6.

$$\int_{UM} \|(\nabla h)(v, v, v)\|^2$$

$$= \frac{9}{4} \int_{UM} \langle (\nabla h)(v, v, v), Jv \rangle^2 + \frac{3}{4} \int_{UM} \langle h(v, v), Jv \rangle^2. \quad \square$$

Lemma 7.

$$\int_{UM} \langle (\nabla h)(v, v, v), Jv \rangle^2 + \int_{UM} \langle (\nabla^2 h)(v, v, v), Jv \rangle \langle h(v, v), Jv \rangle = 0.$$

Proof. Define T_2 by

$$(5.3) \quad T_2(X_1, X_2, \ldots, X_6) = \langle h(X_1, X_2), JX_3 \rangle \langle h(X_4, X_5), JX_6 \rangle.$$

We know that

$$\int_{UM} \langle \nabla^2 T_2 \rangle(v, v, v, v, v, v, v, v) = 0.$$

Since

$$\langle \nabla^2 T_2 \rangle(v, v, v, v, v, v, v, v) = 2\langle (\nabla^2 h)(v, v, v), Jv \rangle \langle h(v, v), Jv \rangle$$

$$+ 2\langle (\nabla h)(v, v, v), Jv \rangle^2,$$

Lemma 7 is proved. □

Lemma 8.

$$\int_{UM} \|(\nabla h)(v, v, v)\|^2 + \int_{UM} \sum_{i=1}^{3} \langle (\nabla^2 h)(e_i, e_i, v, v), Jv \rangle \langle h(v, v), Jv \rangle = 0.$$

Proof. Define T_2 by (5.3). We know that

$$\int_{UM} \sum_{i=1}^{3} \langle \nabla^2 T_2 \rangle(e_i, e_i, v, v, v, v, v, v) = 0.$$
By a straightforward computation, we can prove that
\[
\left(\nabla^2 T_2\right)(e_i, e_i, v, v, v, v, v, v)
= 2\left(\left(\nabla h\right)(v, v), J\right)^2 + 2\left(\left(\nabla^2 h\right)(e_i, e_i, v, v), J\right)\langle h(v, v), J\rangle
+ 4\left(\left(\nabla h\right)(e_i, v, v), G(e_i, v)\right)\langle h(v, v), J\rangle
+ 2\left(h(v, v), \left(\nabla G\right)(e_i, e_i, v)\right)\langle h(v, v), J\rangle.
\]
Because of (3.1) we have
\[
\sum_{i=1}^3 \langle h(v, v), \left(\nabla G\right)(e_i, e_i, v)\rangle \langle h(v, v), J\rangle = -2\langle h(v, v), J\rangle^2.
\]
Using (5.4) we thus obtain
\[
\sum_{i=1}^3 \left(\nabla^2 T_2\right)(e_i, e_i, v, v, v, v, v, v)
= 2\left(\left(\nabla^2 h\right)(e_i, e_i, v, v), J\right)\langle h(v, v), J\rangle
+ 2\|\left(\nabla h\right)(v, v)\|^2.
\]
Integrating this completes the proof. □

Lemma 9.
\[
\int_{UM} \|\left(\nabla h\right)(v, v, v)\|^2 + \int_{UM} \left(\left(\nabla^2 h\right)(v, v, v, v), h(v, v)\right) = 0.
\]

Proof. Define the covariant tensor field T_3 on M by
\[
T_3(X_1, X_2, X_3, X_4) = \langle h(X_1, X_2), h(X_3, X_4)\rangle.
\]
We know that
\[
\int_{UM} \left(\nabla^2 T_3\right)(v, v, v, v, v, v) = 0.
\]
Because
\[
\left(\nabla^2 T_3\right)(v, v, v, v, v, v) = 2\left(\left(\nabla^2 h\right)(v, v, v, v), h(v, v)\right) + 2\|\nabla h(v, v)\|^2,
\]
Lemma 9 follows. □

Lemma 10.
\[
\frac{3}{4} \int_{UM} \langle \left(\nabla h\right)(v, v, v), J\rangle^2
- \frac{1}{12} \int_{UM} \langle h(v, v), J\rangle^2 + \int_{UM} R(v, A_{J_0^p}, A_{J_0^p}, v) = 0.
\]

Proof. Define the function g on UM_p, $p \in M$, by
\[
g(v) = \langle h(v, v), J\rangle \left(\left(\nabla^2 h\right)(v, v), J\right)\langle h(v, v), J\rangle.
\]
By a computation using (4.3), (4.4), the minimality of M, (5.2), and several times Lemma 1, we can prove that
\[
(\Delta g)(v) = -72g(v) + 30\left\langle h(v, v), (\nabla^2 h)(v, v, v, v) \right\rangle \\
- 24\left\langle h(v, v), Jv \right\rangle^2 + 30\left\| h(v, v) \right\|^2 \\
- 48\sum_{i=1}^{3} \left\langle (\nabla h)(v, v, e_i), Jv \right\rangle \left\langle h(v, v), G(v, e_i) \right\rangle \\
- 18R(v, A_{Jp}v, A_{Jp}v, v) \\
+ 8\sum_{i=1}^{3} \left\langle h(v, v), Jv \right\rangle \left\langle (\nabla^2 h)(e_i, e_i, v, v), Jv \right\rangle.
\]
Integrating this over UM, using Lemmas 7, 9, 2, 3, and 8, we obtain
\[
72\int_{UM} \langle (\nabla h)(v, v, v), Jv \rangle + 30\int_{UM} \langle h(v, v), Jv \rangle^2 \\
- 38\int_{UM} \left\| (\nabla h)(v, v, v) \right\|^2 - 18\int_{UM} R(v, A_{Jp}v, A_{Jp}v, v) = 0.
\]
Lemma 6 then completes the proof. □

Making use of Lemmas 2 and 4 we can rewrite Lemma 10 as follows.

Lemma 11.
\[
\frac{3}{4} \int_{UM} \langle (\nabla h)(v, v, v), Jv \rangle^2 \\
+ \int_{UM} \left[R(v, A_{Jp}v, A_{Jp}v, v) - \frac{1}{16} \left(\left\| A_{Jp}v \right\|^2 - \langle A_{Jp}v, v \rangle^2 \right) \right] = 0. □
\]

Proposition. If M is a 3-dimensional compact totally real submanifold of S^6 and if all sectional curvatures K of M satisfy $K \geq \frac{1}{16}$, then

1. $\langle (\nabla h)(v, v, v), Jv \rangle = 0$, and
2. $R(v, A_{Jp}v, A_{Jp}v, v) = \frac{1}{16}(\left\| A_{Jp}v \right\|^2 - \langle A_{Jp}v, v \rangle^2)$, for all $p \in M$ and $v \in UM_p$.

Proof. Under the assumptions of the proposition,
\[
R(v, A_{Jp}v, A_{Jp}v, v) - \frac{1}{16} \left(\left\| A_{Jp}v \right\|^2 - \langle A_{Jp}v, v \rangle^2 \right) \geq 0,
\]
and Lemma 11 then implies the proposition. □

Now we can prove the theorem. Suppose that all sectional curvatures K of M satisfy $K > \frac{1}{16}$. By the proposition, we have
\[
R(v, A_{Jp}v, A_{Jp}v) = \frac{1}{16} \left(\left\| A_{Jp}v \right\|^2 - \langle A_{Jp}v, v \rangle^2 \right).
\]
If there exist a unit vector $v \in UM_p$, $p \in M$, such that $A_{Jp}v$ is not parallel to v, then v and $A_{Jp}v$ determine a plane of which the sectional curvature equals $\frac{1}{16}$ according to (5.5). This is a contradiction. Therefore all $A_{Jp}v$ are parallel to v. This implies because of (4.5) that
\[
\left\| h(v, v) \right\|^2 = \langle h(v, v), Jv \rangle^2.
\]
for all $v \in UM$. (5.6) together with Lemma 2 implies that $h = 0$, i.e., that M is totally geodesic. This completes the proof.

6. Examples. 1. Let $M = \{ x \in S^6 \mid x = x_1e_1 + x_2e_3 + x_4e_5 + x_7e_7 \}$, and let i be the inclusion map from M into S^6. Then (M, i) is a 3-dimensional totally real and totally geodesic submanifold of S^6.

2. In [E] Ejiri announced that he can construct a totally real immersion of $S^3(1/16)$ into S^6.

References

