LOCAL CUT-POINTS IN CONTINUOUS IMAGES OF COMPACT ORDERED SPACES

RYUJI MAEHARA

Abstract. We prove that if a continuum X is continuous image of a compact ordered space and if X is not locally separable at a point x, then x lies in the closure of the set of all local cut-points of X.

A continuum is a compact connected Hausdorff space. An ordered space is a totally ordered set endowed with the topology generated by open intervals. It is known from L. B. Treybig [4] that if a nonmetrizable continuum X is a continuous image of a compact ordered space, then some subset of less than three points separates X. In this paper we prove the following theorem by modifying Treybig’s method, and give a corollary.

Theorem. If a continuum X is a continuous image of a compact ordered space and if X is not locally separable at x_0, then for any neighborhood U of x_0 there exists a nonempty open set W such that $\overline{W} \subset U$ and the boundary $\text{Bd}(W)$ consists of at most two points.

A space X is said to be locally separable at x if there is a separable neighborhood of x. A point x of X is a local cut-point of X if there is a connected open neighborhood U of x such that $U - \{x\}$ is not connected. We will denote the set of all local cut-points of X by $L(X)$. If W is a nonempty open subset of a continuum X such that its closure \overline{W} is not X, then its boundary $\text{Bd}(W)$ separates X. In addition, if $\text{Bd}(W)$ is finite, $\text{Bd}(W)$ contains at least one local cut-point. Hence, the theorem implies:

Corollary. Let X be a continuum which is a continuous image of a compact ordered space. If X is not locally separable at x_0, then x_0 is in the closure of $L(X)$.

In the preceding corollary, even if X is locally connected, we can assert neither that x_0 is always an accumulation point of $L(X)$, nor that x_0 is a local cut-point or an end-point of X. Counterexamples for these will be given in §3.

1. We prepare an essential part of Treybig’s method used in [4 and 5] in a slightly modified form as follows:

Lemma. Let K be a nonseparable compact ordered space, and let f be a continuous map from K onto a Hausdorff space. Given a countable subset L_0 of K, K can be
written as the union of mutually disjoint nonempty subsets,
\[K = L \cup \left(\bigcup \mathcal{G}_\lambda \right). \]

such that the following conditions are satisfied:

1. \(L \cap G_\lambda = \emptyset, \ G_\lambda \cap G_\mu = \emptyset \) (if \(\lambda \neq \mu \)),
2. \(L \) is a separable closed set containing \(L_0 \),
3. each \(G_\lambda \) is an open set of the form \((a_\lambda, b_\lambda)\),
4. if \(f(G_\lambda) \cap f(G_\mu) \neq \emptyset \), then \(f(a_\lambda), f(b_\lambda) = \{ f(a_\mu), f(b_\mu) \} \), and
5. \(f(L) \cap f(G_\lambda) \subset \{ f(a_\lambda), f(b_\lambda) \} \).

Proof. Let \(L_0 = \{ c_1, c_2, c_3, \ldots \} \). We construct a sequence of finite subsets \(L_1, L_2, L_3, \ldots \) of \(K \) inductively as follows. Let \(a_0, a_2 \) be the minimum and the maximum of \(K \), respectively. Choose \(a_1 \) so that \(a_0 < a_1 < a_2 \), and define \(L_1 = [a_0, a_1, a_2) \). Suppose that \(L_n = [b_0, b_1, \ldots, b_p] \) is defined, where \(b_0 < b_1 < \cdots < b_p \). Put \(I_i = [b_{i-1}, b_i] \) for \(i = 1, 2, \ldots, p \). If \(i \neq j \), we define

\[A_{ij} = \{ (\xi, \eta) \in I_i \times I_j : f(\xi) = f(\eta) \}. \]

If \(A_{ij} \) is nonempty, there exists a subset \(\{(\alpha, \alpha'), (\beta, \beta'), (\gamma, \gamma'), (\delta, \delta')\} \) of \(A_{ij} \) such that

\[\alpha < \xi < \beta, \quad \gamma < \eta < \delta \quad \text{for all} \ (\xi, \eta) \in A_{ij}. \]

We set \(B_{ij} = \{ \alpha, \alpha', \beta, \beta', \gamma, \gamma', \delta, \delta' \} \). If \(A_{ij} \) is empty we set \(B_{ij} = \emptyset \). Define

\[L_{n+1} = \bigcup_{i \neq j} B_{ij} \cup \{ c_1, c_2, \ldots, c_n \}, \]

and let \(L = \bigcup_n L_n \). Then \(L \) is a separable closed set. Since \(K \) is nonseparable, \(K - L \) is a nonempty open subset of \(K \). \(K - L \) can be written as the union of mutually disjoint maximal convex open subsets \(G_\lambda \). Since the minimum and the maximum of \(K \) belong to \(L \), each \(G_\lambda \) is of the form \((a_\lambda, b_\lambda)\), where \(a_\lambda, b_\lambda \in L \).

To prove (4), suppose that \(f(c) = f(d) \) for \(c \in G_\lambda \) and \(d \in G_\mu \). Also suppose that

\[f(a_\lambda) \notin \{ f(a_\mu), f(b_\mu) \}. \]

Then there exist convex open neighborhoods \(U_\lambda, U_\mu, V_\mu \) of \(a_\lambda, a_\mu, b_\mu \), respectively, such that

\[f(U_\lambda) \cap f(U_\mu) = \emptyset \quad \text{and} \quad f(U_\lambda) \cap f(V_\mu) = \emptyset. \]

By the definition of \(L \), for some integer \(n \) the set \(L_n = \{ b_0, b_1, \ldots, b_p \} \) contains elements \(b_i, b_j \) such that

\[(a_\lambda, b_\lambda) \subset [b_{i-1}, b_i], \quad (a_\mu, b_\mu) \subset [b_{j-1}, b_j], \]

\[b_{i-1} \in U_\lambda, \quad b_{j-1} \in U_\mu, \quad b_j \in V_\mu. \]

Since \(f(c) = f(d) \), by construction, the set \(L_{n+1} \) contains elements \(\alpha, \alpha' \in B_{ij} \) such that

\[b_{i-1} \leq \alpha \leq c, \quad b_{j-1} \leq \alpha' \leq b_j, \quad \text{and} \quad f(\alpha) = f(\alpha'). \]

If \(a_\lambda < \alpha \), then we would have \(a_\lambda < \alpha < b_\lambda \) and hence \(\alpha \in G_\lambda \cap L_{n+1} \) (contradiction). If \(\alpha \leq a_\lambda \), then \(\alpha \in U_\lambda \). So \(\alpha' \) could not lie in \(U_\mu \cup V_\mu \), and hence \(a_\mu < \alpha' < b_\mu \) (contradiction). A similar argument shows that \(f(b_\lambda) \notin \{ f(a_\mu), f(b_\mu) \} \) and \{ \(f(a_\mu), f(b_\mu) \} \subset \{ f(a_\lambda), f(b_\lambda) \} \).
To prove (5), suppose that \(f(c) = f(d) \) for \(c \in L \) and \(d \in G_\lambda \), and that \(f(c) \notin \{ f(a_\lambda), f(b_\lambda) \} \). Choose convex neighborhoods \(W, U_\lambda, V_\lambda \) of \(c, a_\lambda, b_\lambda \), respectively so that

\[
f(W) \cap f(U_\lambda) = \emptyset, \quad f(W) \cap f(V_\lambda) = \emptyset.
\]

For some integer \(n \), the set \(L_n = \{ b_0, b_1, \ldots, b_p \} \) contains such elements \(b_i, b_j \) that satisfy:

\[
b_{i-1} \leq c \leq b_i, \quad b_{j-1} \leq a_\lambda < d < b_\lambda \leq b_j,
\]

\[
b_{j-1} \in U_\lambda, \quad b_j \in V_\lambda, \quad \text{and} \quad \{ b_{j-1}, b_j \} \cap W \neq \emptyset.
\]

Then the set \(L_{n+1} \) contains elements \(\alpha, \alpha', \beta, \beta' \) such that:

\[
b_{i-1} \leq \alpha \leq c \leq \beta \leq b_i, \quad \alpha', \beta' \in [b_{j-1}, b_j],
\]

\[
f(\alpha) = f(\alpha') \quad \text{and} \quad f(\beta) = f(\beta').
\]

If \(b_{i-1} \in W \), then \(\alpha \in W \) and so \(\alpha' \notin U_\lambda \cup V_\lambda \), whence \(\alpha' \in (a_\lambda, b_\lambda) \). This is a contradiction. Similarly, if \(b_j \in W \), then we would have \(\beta' \in (a_\lambda, b_\lambda) \).

2. Proof of the theorem. We assume \(U \neq X \). Since \(X \) is normal, we can find a sequence of open sets \(U_1, U_2, U_3, \ldots \) such that

\[
x_0 \in U_n \subset \overline{U}_n \subset U_{n+1} \subset \overline{U}_{n+1} \subset U.
\]

Let \(S = X - (\cup \{ U_n, n = 1, 2, 3, \ldots \}) \); then \(S \) is a nonempty closed set and \(x_0 \notin S \). We define an equivalence relation \(\sim \) on \(X \) by setting \(x \sim y \) if and only if \(x = y \) or \(\{ x, y \} \subset S \). Since \(\sim \) is a closed relation, the quotient space \(X_1 = X/\sim \) is Hausdorff. Note that the natural projection \(\phi: X \to X_1 \) is a local homeomorphism on \(X - S \), and hence, \(X_1 \) is not separable. Let \(V_n = \phi(X - \overline{U}_n) \). Then \(\{ V_n \}_{n=1}^{\infty} \) forms a countable basis of neighborhoods at point \(s = \phi(S) \) in \(X_1 \).

As well as \(X, X_1 \) is a continuous image of compact ordered space. Let \(K \) be a compact ordered space, and \(f \) a continuous surjection from \(K \) onto \(X_1 \). By [3, Lemma 4] we can assume that (i) if \(K_1 \) is a closed proper subset of \(K \), then \(f(K_1) \neq X_1 \), and (ii) if \(a, b \) are different elements of \(K \) with \(f(a) = f(b) \), then there is a point \(c \) between \(a \) and \(b \) such that \(f(c) \neq f(a) \).

For each positive integer \(n \), there is a finite cover \(\Omega_n \) of \(f^{-1}(s) \) such that each member of \(\Omega_n \) is of the form \((a_i, b_i) \), or \((a_i, \infty) \), or \((-\infty, b_i) \), and is contained in \(f^{-1}(V_n) \). Let \(L_n \) denote the set of all end-points \(a_i, b_j \) of members of \(\Omega_n \), and let \(L_0 = \bigcup_n L_n \). We remark that if two points \(a, b \) of \(K \) are not consecutive and \(f(a) = s \), then there is a point of \(L_0 \) between \(a \) and \(b \). In fact, choose a point \(c \) between \(a \) and \(b \). By (ii), we can assume \(f(c) \neq s \). There is an integer \(n \) such that \(f(c) \notin V_n \). Then one of the end-points of a member of \(\Omega_n \) which contains \(a \) must lie between \(a \) and \(b \).

If necessary, adding a point of \(f^{-1}(s) \) to \(L_0 \), we can assume \(s \in f(L_0) \). Noting that \(K \) is nonseparable, we apply our lemma for the map \(f: K \to X_1 \) and the countable subset \(L_0 \) of \(K \) to obtain a decomposition of \(K \) into mutually disjoint nonempty subsets with properties (1)-(5) as in the lemma:
We choose one \(G_\lambda \) and denote it by \(G = (a, b) \). Let \(H^* \) be the collection of all \(G_\mu \) such that \(\{ f(a_\mu), f(b_\mu) \} = \{ f(a), f(b) \} \), and let \(H = \bigcup H^* \) and \(M = \{ \mu : G_\mu \in H^* \} \).

Let \(W_1 = X_1 - f(K - H) \). \(W_1 \) is open. \(W_1 \) is nonempty, since otherwise we would have \(X_1 = f(K - H) \) where \(K - H \) is a proper closed subset of \(K \), contradicting assumption (i) on map \(f \). Since \(W_1 \subset f(H) \subset f(H) \), it follows that \(\overline{W_1} \subset f(H) \). Now let \(c \) be a boundary point of the open set \(H \), and let \(V \) be an arbitrary convex neighborhood of \(c \). Since \(V \) meets \(H \), \(V \) meets some member \(G_\mu \) of \(H^* \). But \(c \) is not in \(G_\mu \). Then one of \(a_\mu \) or \(b_\mu \) must lie in \(V \). Thus \(c \) is in the closure of \(\{ a_\mu, b_\mu : \mu \in M \} \) and hence in the closed set \(f^{-1}(a) \cup f^{-1}(b) \). Therefore,

\[
\overline{H} \subset H \cup f^{-1}(a) \cup f^{-1}(b),
\]

and

\[
\overline{W_1} \subset f(H) \subset f(H) \cup \{ f(a), f(b) \}.
\]

It follows that

\[
\text{Bd}(W_1) = \overline{W_1} \cap X_1 - W_1 \subset (f(H) \cup \{ f(a), f(b) \}) \cap f(K - H)
= \{ f(a), f(b) \} \quad \text{(by properties (4) and (5)).}
\]

Note that \(s \notin \{ f(a), f(b) \} \), since if for example \(f(a) = s \), then as remarked previously, some element of \(L_0 \) would lie in \(G = (a, b) \), contradicting \(G \cap L = \emptyset \). Thus \(s \notin \overline{W_1} \). Finally, since \(\phi : X \to X_1 \) is locally homeomorphic on \(X - S \), and \(s = \phi(S) \notin \overline{W_1} \), the open set \(W = \phi^{-1}(W_1) \) of \(X \) satisfies the required properties in the theorem.

3. Examples

As mentioned in the introduction, we give two examples to complement our corollary.

Example 1. Let \(\Lambda \) be an uncountable set. For each \(\lambda \in \Lambda \), let \(D_\lambda \) denote the unit closed disk with center \(o \) in the complex number plane, and let \(Y \) denote the product of all \(D_\lambda \). We regard each \(D_\lambda \) as a subset of \(Y \) by identifying a point \(z \in D_\lambda \) with the point \((z_\mu) \) of \(Y \) defined by \(z_\mu = z \) if \(\mu = \lambda \), and \(z_\mu = o \) if \(\mu \neq \lambda \). Then all subsets \(D_\lambda \) have the common center \(O \). By the definition of the product topology, we note that every neighborhood of \(O \) contains all \(D_\lambda \) except for finitely many \(\lambda \). Define \(X = \bigcup D_\lambda \) and endow \(X \) with the relative topology from \(Y \). Then space \(X \) has the following properties:

1. \(X \) is a locally connected continuum,
2. \(X \) is not locally separable at \(O \), and is locally separable at any other points,
3. \(O \) is a cut-point of \(X \) and it is a unique local cut-point,
4. \(X \) is two dimensional at every point, and
5. \(X \) is continuous image of an ordered continuum.

Properties (1)–(4) are easily verified. Property (5) follows from a theorem of Cornette [1] that states that a locally connected continuum is a continuous image of an ordered continuum if and only if its every cyclic element is so. Note that the cyclic elements of \(X \) are the \(D_\lambda \) which are locally connected metric continuum and hence are continuous images of the real interval \([0, 1]\) by the classical theorem of Hahn-Mazurkiewicz.
EXAMPLE 2. Let I denote the interval $[0, 1]$ of the real numbers, and L the "long
interval" $[0, \Omega]$, which is a nonseparable ordered continuum. We define a subspace Y of $L \times I$ by

$$Y = A_0 \cup \left(\bigcup_n A_n \right) \cup B_0 \cup B_\Omega,$$

where

$$A_0 = \left\{ (\lambda, 0) : \lambda \in L \right\},$$
$$A_n = \left\{ (\lambda, 1/n) : \lambda \in L \right\}, \quad \text{where } n = 1, 2, 3, \ldots,$$
$$B_0 = \left\{ (0, t) : t \in I \right\}, \quad B_\Omega = \left\{ (\Omega, t) : t \in I \right\}.$$

Define an equivalence relation \sim on Y by setting $y \sim z$ if and only if $y = z$ or $\{y, z\} \subset A_0$. Let X denote the quotient space Y/\sim, and a_0 the point which is the image of A_0 under the natural projection. Then X satisfies the following properties:

1. X is a continuum,
2. X is netlike (that means, any two different points of X can be separated by a
finite subset of X),
3. X is not locally separable at a_0,
4. a_0 is neither a local cut-point nor an end-point of X, and
5. X is a continuous image of an ordered continuum.

Properties (1)–(4) are easily verified. Property (5) follows from (1) and (2) (see [2
or 6]).

REFERENCES