Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the $ p$-adic heights of some abelian varieties


Author: Hideo Imai
Journal: Proc. Amer. Math. Soc. 100 (1987), 1-7
MSC: Primary 14K15; Secondary 11G10, 14G25
MathSciNet review: 883390
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an abelian variety defined over an algebraic number field, different definitions of $ p$-adic heights have been given by several authors. In this note, we shall prove that the $ p$-adic height defined by A. Néron and that by P. Schneider coincide.


References [Enhancements On Off] (What's this?)

  • [1] S. Bloch, A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture, Invent. Math. 58 (1980), no. 1, 65–76. MR 570874, 10.1007/BF01402274
  • [2] Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 0444670
  • [3] B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195–237. MR 717595
  • [4] A. Néron, Fonctions thêta $ p$-adiques et hauteurs $ p$-adiques (Séminaire de théorie de nombres, Paris 1980-1981), Progress in Math., vol. 22, Birkhäuser, Boston, Basel, and Stuttgart, 1982, pp. 149-174.
  • [5] J. Oesterlé, Construction de hauteurs archimédiennes et 𝑝-adiques suivant la methode de Bloch, Seminar on Number Theory, Paris 1980-81 (Paris, 1980/1981) Progr. Math., vol. 22, Birkhäuser Boston, Boston, MA, 1982, pp. 175–192 (French). MR 693318
  • [6] B. Perrin-Riou, Hauteurs 𝑝-adiques, Seminar on number theory, Paris 1982–83 (Paris, 1982/1983) Progr. Math., vol. 51, Birkhäuser Boston, Boston, MA, 1984, pp. 233–257 (French). MR 791597
  • [7] Peter Schneider, 𝑝-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401–409. MR 679765, 10.1007/BF01389362
  • [8] J. T. Tate, 𝑝-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14K15, 11G10, 14G25

Retrieve articles in all journals with MSC: 14K15, 11G10, 14G25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0883390-9
Article copyright: © Copyright 1987 American Mathematical Society