Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embedding countable rings in $ 2$-generator rings


Author: K. C. O’Meara
Journal: Proc. Amer. Math. Soc. 100 (1987), 21-24
MSC: Primary 16A56; Secondary 16A42, 16A44, 20M05
DOI: https://doi.org/10.1090/S0002-9939-1987-0883394-6
MathSciNet review: 883394
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A short elementary proof involving matrices is used to show that any countable ring can be embedded in a $ 2$-generator ring. Immediate corollaries are the known results that any countable (respectively finite) semigroup can be embedded in a $ 2$-generator (respectively finite $ 2$-generator) semigroup.


References [Enhancements On Off] (What's this?)

  • [1] T. Evans, Embedding theorems for multiplicative systems and projective geometries, Proc. Amer. Math. Soc. 3 (1952), 614-620. MR 0050566 (14:347h)
  • [2] G. Higman, B. H. Neumann, and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254. MR 0032641 (11:322d)
  • [3] B. H. Neumann, Embedding theorems for semigroups, J. London Math. Soc. 35 (1960), 184-192. MR 0163969 (29:1268)
  • [4] S. Subbiah, Another proof of a theorem of Evans, Semigroup Forum 6 (1973), 93-94. MR 0376930 (51:13105)
  • [5] Solution #6244 to the problem proposed by John Myhill, Amer. Math. Monthly 87 (1980), 676-678.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A56, 16A42, 16A44, 20M05

Retrieve articles in all journals with MSC: 16A56, 16A42, 16A44, 20M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0883394-6
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society