Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isolation theorem for products of linear forms


Author: T. W. Cusick
Journal: Proc. Amer. Math. Soc. 100 (1987), 29-33
MSC: Primary 11H46
DOI: https://doi.org/10.1090/S0002-9939-1987-0883396-X
MathSciNet review: 883396
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A theorem of Cassels and Swinnerton-Dyer about products of three linear forms with real coefficients is generalized to products of any number of linear forms.


References [Enhancements On Off] (What's this?)

  • [1] J. W. S. Cassels, An introduction to diophantine approximation, Cambridge Univ. Press, 1957. MR 0087708 (19:396h)
  • [2] -, An introduction to the geometry of numbers, Springer-Verlag, Berlin, 1959.
  • [3] J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London Ser A 248 (1955), 73-96. MR 0070653 (17:14f)
  • [4] B. F. Skubenko, On the product of $ n$ linear forms in $ n$ variables, Trudy Mat. Inst. Steklov. 158 (1981), 175-179. (Russian) MR 662844 (84k:10025)
  • [5] -, Isolation theorems for decomposable forms over totally real algebraic number fields of degree $ n \geq 3$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Int. Steklov. (LOMI) 112 (1981), 167-171. (Russian) MR 644002 (83j:10036)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11H46

Retrieve articles in all journals with MSC: 11H46


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0883396-X
Keywords: Linear forms, norm forms
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society