Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Boundedness properties in Volterra integro-differential systems


Author: W. E. Mahfoud
Journal: Proc. Amer. Math. Soc. 100 (1987), 37-45
MSC: Primary 45D05; Secondary 34K20, 45J05
DOI: https://doi.org/10.1090/S0002-9939-1987-0883398-3
MathSciNet review: 883398
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions are given to insure that all solutions of the integrodifferential system

$\displaystyle x' = A(t)x + \int_0^t {C(t,s)x(s)ds + f(t)} $

are uniform bounded.

References [Enhancements On Off] (What's this?)

  • [1] T. A. Burton, Perturbed Volterra equations, J. Differential Equations 43 (1982), 168-183. MR 647061 (83f:45002)
  • [2] -, Periodicity and limiting equations in Volterra systems, Boll. Un. Mat. Ital. 4 (1985), 31-39. MR 805203 (86m:45006)
  • [3] R. Grimmer and G. Seifert, Stability properties of Volterra integrodifferential equations, J. Differential Equations 19 (1975), 142-166. MR 0388002 (52:8839)
  • [4] S. I. Grossman and R. K. Miller, Nonlinear Volterra integrodifferential systems with $ {L^1}$kernels, J. Differential Equations 13 (1973), 551-566. MR 0348417 (50:915)
  • [5] J. K. Hale, Ordinary differential equations, Wiley, New York, 1969. MR 0419901 (54:7918)
  • [6] R. K. Miller, Asymptotic stability properties of linear Volterra integrodifferential equations, J. Differential Equations 10 (1971), 485-506. MR 0290058 (44:7243)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45D05, 34K20, 45J05

Retrieve articles in all journals with MSC: 45D05, 34K20, 45J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0883398-3
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society