Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convolution equations in spaces of distributions supported by cones


Authors: Alex Meril and Daniele C. Struppa
Journal: Proc. Amer. Math. Soc. 100 (1987), 70-74
MSC: Primary 46F10; Secondary 44A35
DOI: https://doi.org/10.1090/S0002-9939-1987-0883403-4
MathSciNet review: 883403
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe some examples of surjective convolutors on $ \mathcal{D}'(\Gamma )$, for $ \Gamma $ a closed convex cone in $ {{\mathbf{R}}^n}$. We also give necessary and suffficient conditions on $ {S_1}, \ldots ,{S_m}$ in $ \mathcal{S}'(\Gamma )$ to be generators of the whole convolution algebra $ \mathcal{S}'(\Gamma )$.


References [Enhancements On Off] (What's this?)

  • [1] W. Abramczuk, A class of surjective convolution operators, Pacific J. Math. 110 (1984), 1-7. MR 722732 (85k:46042)
  • [2] L. Ehrenpreis, Solutions of some problems of division. IV, Amer. J. Math. 82 (1960), 522-588. MR 0119082 (22:9848)
  • [3] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949. MR 0226387 (37:1977)
  • [4] -, The analysis of linear partial differential operators. II, Grundlehren Math. Wiss., Springer-Verlag, Berlin-Heidelberg-New York, 1983. MR 705278 (85g:35002b)
  • [5] J. L. Lions, Supports dans la transformation de Laplace, J. Analyse Math. 2 (1952-53), 369-380. MR 0058013 (15:307g)
  • [6] L. Schwartz, Théorie des distributions. II, Hermann, Paris, 1959.
  • [7] R. Shambayati and R. Zielezny, On Fourier transforms of distributions with one-sided bounded support, Proc. Amer. Math. Soc. 88 (1983), 237-243. MR 695250 (84h:46052)
  • [8] -, Convolution equations in spaces of distributins with one-sided bounded support, Trans. Amer. Math. Soc. 289 (1985), 707-713. MR 784010 (86g:46056)
  • [9] V. S. Vladimirov, Generalized junctions in mathematical physics, Mir, Moscow, 1979. MR 564116 (80j:46062b)
  • [10] M. R. Wohlers and E. J. Beltrami, Distributions and the boundary values of analytic functions, Academic Press, New York and London, 1966. MR 0208362 (34:8172)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46F10, 44A35

Retrieve articles in all journals with MSC: 46F10, 44A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0883403-4
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society