Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Boolean reducts of relation and cylindric algebras and the cube problem


Author: H. Andréka
Journal: Proc. Amer. Math. Soc. 100 (1987), 148-153
MSC: Primary 03G15; Secondary 03G05, 03G25, 06E99
DOI: https://doi.org/10.1090/S0002-9939-1987-0883419-8
MathSciNet review: 883419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that not every Boolean algebra is the Boolean part of a nondiscrete relation or cylindric algebra, but every nonatomless Boolean algebra is. Solutions of Tarski's Cube Problem for nondiscrete relation and cylindric algebras are given.


References [Enhancements On Off] (What's this?)

  • [1] G. M. Brenner, A simple construction for rigid and weakly homogeneous Boolean algebras answering a question of Rubin, Proc. Amer. Math. Soc. 87 (1983), 601-606. MR 687625 (84d:06019)
  • [2] G. M. Brenner and J. D. Monk, Tree algebras and chains, Universal Algebra and Lattice Theory, Lecture Notes in Math., vol. 1004, Springer-Verlag, New York, 1983, pp. 54-66. MR 716174 (84m:06022)
  • [3] S. D. Comer, Combinatorial aspects of relation algebras, Algebra Universalis 18 (1984), 77-94. MR 743458 (85h:08008)
  • [4] W. Hanf, On some fundamental problems concerning isomorphism of Boolean algebras, Math. Scand. 5 (1957), 205-217. MR 0108451 (21:7167)
  • [5] L. Henkin, J. D. Monk and A. Tarski, Cylindric algebras. I, II, North-Holland, Amsterdam, 1971, 1985.
  • [6] L. Henkin, J. D. Monk, A. Tarski, H. Andréka, I. Németi, Cylindric set algebras, Lecture Notes in Math., vol. 883, Springer-Verlag, Berlin, 1981. MR 639151 (84a:03078)
  • [7] B. Jónsson, Varieties of relation algebras, Algebra Universalis 15 (1982), 273-298. MR 689767 (84g:08023)
  • [8] B. Jónsson and A. Tarski, Boolean algebras with operators. II, Amer. J. Math. 74 (1952), 127-162. MR 0045086 (13:524g)
  • [9] J. Ketonen, The structure of countable Boolean algebras, Ann. of Math. (2) 108 (1978), 41-89. MR 0491391 (58:10647)
  • [10] R. Maddux, Finite integral relation algebras, Universal Algebra and Lattice Theory (Proc. Charleston 1984), Lecture Notes in Math., vol. 1149, Springer-Verlag, Berlin, 1985, pp. 175-197. MR 823016 (87d:03180)
  • [11] -, Some varieties containing relation algebras, Trans. Amer. Math. Soc. 272 (1982), 501-526. MR 662049 (84a:03079)
  • [12] R. McKenzie, Representations of integral relation algebras, Michigan Math. J. 17 (1970), 279-287. MR 0286735 (44:3944)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03G15, 03G05, 03G25, 06E99

Retrieve articles in all journals with MSC: 03G15, 03G05, 03G25, 06E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0883419-8
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society