ORIENTATION PRESERVING ACTIONS
OF FINITE ABELIAN GROUPS ON SPHERES
RONALD M. DOTZEL

ABSTRACT. If G is a finite Abelian group acting as a $\mathbb{Z}(p)$-homology n-sphere X (where \mathcal{P} is the set of primes dividing $|G|$), then there is an integer valued function $n(\ ,G)$ defined on the prime power subgroups H of G such that X^H has the $\mathbb{Z}(p)$-homology of a sphere $S^{n(H,G)}$. We prove here that there exists a real representation R of G such that for any prime power subgroup H of G, $\dim(S(R^H)) = n(H,G)$ where $S(R^H)$ is the unit sphere of R^H, provided that $n - n(H,G)$ is even whenever H is a 2-subgroup of G.

0. Introduction. Suppose that G is a finite Abelian group and let \mathcal{P} be the set of primes dividing $|G|$. If G acts on a finite CW-complex X which has the $\mathbb{Z}(p)$-homology of S^n, then for any $p \in \mathcal{P}$ and p-subgroup H of G the fixed point set of H on X, X^H, has the $\mathbb{Z}(p)$-homology of $S^{n(H,G)}$ for some integer $n(H,G) \geq -1$ (-1 signifies empty). This is a well-known consequence of Smith theory ([2, III or 1, IV], e.g.). Thus we obtain in this way an integer valued function, $n(\ ,G)$, defined on the set of p-subgroups of G by $H \mapsto n(H,G)$ (note that $n(e,G) = n$). This function is called the “dimension function” and has a considerable literature (see [5, 3, 6, 7, 9]; [10] gives a related extensive bibliography).

The function $n(\ ,G)$ satisfies the following well-known conditions (see [1, XIII, 2.3; IV, 4.4, 4.7]):

1. (Borel Formula) If $H \leq K$ are both p-subgroups of G and $K/H = \mathbb{Z}_p + \mathbb{Z}_p$, then $n(H,G) - n(K,G) = \sum(n(K'/G) - n(K,G))$ with the sum over all $H \leq K' \leq K$ such that $K'/H = \mathbb{Z}_p$.

2. If $H \leq K$ are p-subgroups of G, then $n(K,G) \leq n(H,G)$.

3. If $H \leq K$ are p-subgroups of G with $K/H = \mathbb{Z}_p$ and p odd, then $n(H,G) - n(K,G)$ is even.

4. If $H \leq K' \leq K$ are 2-subgroups of G such that $K/H = \mathbb{Z}_4$, $K'/H = \mathbb{Z}_2$, then $n(H,G) - n(K',G)$ is even.

For each $p \in \mathcal{P}$, let $G(p)$ denote the p-Sylow subgroup of G and set $N(\ ,G) = n(\ ,G) + 1$. The function $N(\ ,G)$ restricted to the subgroups of $G(p)$ will naturally be denoted by $N(\ ,G(p))$. In [8] it was shown that $N(\ ,G(p))$ is realized by a real representation $V(p)$ of $G(p)$ which means that for each $H \leq G(p)$, $\dim V(p)^H = N(H,G(p)) = N(H,G)$. If $S(V(p))$ denotes the unit sphere of $V(p)$, then $\dim S(V(p)^H) = n(H,G)$.

Here we are interested in the existence of a real representation R of the Abelian group G such that for any p-subgroup H of G (for any $p \in \mathcal{P}$), $\dim R^H = N(H,G)$. Thus R would be a simultaneous realization of the functions $N(\ ,G(p))$, $p \in \mathcal{P}$.

Received by the editors March 22, 1985. These results were presented to the AMS at the 829th meeting in Charlotte, North Carolina, in October 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 57S17, 57S25.

©1987 American Mathematical Society
0002-9939/87 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
It should be noted that in the special case where X^H is a homology sphere for all $H \leq G$, then $N(\ ,G)$ is defined on all subgroups of G and tom Dieck has shown in [3] that $N(\ ,G)$ is realized by a difference of representations. In general, this is best possible.

Clearly $N(\ ,G)$ satisfies conditions 1–4 if $n(\ ,G)$ does. We will denote $N(e,G)$ by N. As an example to show that some condition beyond 1–4 is needed, suppose $G = \mathbb{Z}_6$, $N = 2$, $N(\mathbb{Z}_3,G) = 0$, and $N(\mathbb{Z}_2,G) = 1$. Then $N(\ ,G)$ satisfies conditions 1–4 but there is no real representation of G which realizes these numbers simultaneously as dimensions. From now on we will assume the following “orientation preserving” condition holds, in addition to conditions 1–4:

5. If H is any 2-subgroup of G, then $N - N(H,G)$ is even.

We obtain the following theorem and corollary:

Theorem. Let G be a finite Abelian group and suppose $N(\ ,G)$ is a nonnegative integer valued function defined on the p-subgroups of G for all $p \mid |G|$, satisfying conditions 1–5. Then there exists a real representation R of G such that for any p-subgroup H of G, $p \mid |G|$, $\dim RH = N(H,G)$. Furthermore, if \bar{R} is another such representation of G then for all subgroups H of G,

$$\dim RH \equiv \dim \bar{R}^H \pmod{2}.$$

Corollary. Let G be a finite Abelian group and suppose the 2-Sylow subgroup of G is cyclic. If $N(\ ,G)$ is a nonnegative integer valued function defined on the p-subgroups of G, $p \mid |G|$ satisfying only conditions 1–4, then there exists a real representation R such that for any p-subgroup H of G, $p \mid |G|$, $\dim RH = N(H,G) + 1$.

In §§1 and 2 we prove the theorem and corollary respectively. We thank the referee for several suggestions leading to an improved exposition.

1. Proof of the theorem. Let G be a finite Abelian group and suppose $N(\ ,G)$ is a nonnegative integer valued function on the p-subgroups of G, for all $p \in \mathbb{P}$, satisfying conditions 1–5. By [8], for each $p \in \mathbb{P}$ there is a representation $V(p)$ of the p-Sylow subgroup $G(p)$ of G such that $\dim V(p)^H = N(H,G(p))$ for all $H \leq G(p)$. Let $\mathcal{V} = \bigotimes_{p \mid |G|} V(p)$. Then \mathcal{V} is a representation of G and we will prove by induction on $|G|$ that \mathcal{V} contains a subrepresentation R of G of dimension $N = N(e,G)$ such that $\dim RH = N(H,G)$ for all p-subgroups H of G, all $p \in \mathbb{P}$. So if $|K| < |G|$, $N(\ ,K)$ is a nonnegative integer valued function on the prime power subgroups of K and $W(p)$ is a representation of $K(p)$ realizing $N(\ ,K(p))$, we can assume $W = \bigotimes_{p \mid |K|} W(p)$ contains a subrepresentation realizing $N(\ ,K)$.

Suppose that $N(\ ,G)$ is a nonnegative integer valued function defined on the prime power order subgroups of an Abelian group G satisfying conditions 1–5 and suppose $N(e,G) = N(H,G)$ for some $H \leq G(p)$, $|H| = p$. Then for any prime power order subgroup K of G, define $N(K/K \cap H, G/H) = N(K,G)$. It is clear that $N(\ ,G/H)$ satisfies conditions 1–5. Moreover, for any $K \leq G(p)$,

$$N(K,G) \overset{\text{def}}{=} N(K,G(p)) = N(KH,G(p)) \overset{\text{def}}{=} N(KH,G) \overset{\text{def}}{=} N(KH/H,G/H).$$

For by induction we can assume $N(K',G(p)) = N(K'H,G(p))$ for any $K' \nleq K$ and clearly we can assume $H \nleq K$. Select $K' < K$ such that $|K/K'| = p$ and use
condition 1 (Borel Formula) on $K' \leq KH$ to obtain $N(K, G(p)) = N(KH, G(p))$. It follows that in this case, a representation of G/H realizing $N(\cdot, G/H)$ can be regarded as an unfaithful representation of G (with kernel at least H) realizing $N(\cdot, G)$.

Now for each $p \in P$ and each $Z_p \leq G$, we must have $N - N(Z_p, G) > 0$, otherwise by the observation above we could assume we are given a dimension function on G/Z_p. Of all the differences $N - N(Z_p, G)$, $p \in P$, let p_0 and $H_0 = Z_{p_0}$ be such that $N - N(H_0, G)$ is a minimum. Then the representation $V(p_0)$ of $G(p_0)$ (the p_0-Sylow subgroup of G) contains an irreducible subrepresentation $W(p_0)$ of $G(p_0)$ on which H_0 acts without (nonzero) fixed points. For $q \neq p_0$ select $H = Z_q \leq G(q)$ such that $N - N(H, G)$ is least for q (in general $N - N(H_0, G) \leq N - N(H, G)$) and let $W(q)$ be an irreducible subrepresentation of $V(q)$ on which H acts without fixed points. Then $W = \bigotimes_q |G| W(q)$ is a G-subrepresentation of $V = \bigotimes_q |G| V(q)$.

Let R_1 be an irreducible G-subrepresentation of W. If $|G|$ is larger than 2, R_1 has dimension 2, since R_1 induces a free, irreducible, real representation of a cyclic group of order larger than 2 (the cyclic group is G/kernel of R_1 = kernel of W).

Now R_1 is being a representation of G, has associated to it a dimension function $N_1(\cdot, G)$ defined on all subgroups H of G by $N_1(H, G) = \dim R_1^H$. Set $\overline{N}_1(G) = N(\cdot, G) - N_1(\cdot, G)$. It is easy to verify that $\overline{N}_1(\cdot, G)$ is a dimension function defined on the prime power subgroups of G satisfying conditions 1–5.

Since $\overline{N}_1(e, G) < N(e, G)$ and $\overline{N}_1(H_0, G) = N(H_0, G)$ we are presented with two situations: (a) $\overline{N}_1(e, G) = \overline{N}_1(H_0, G)$ or (b) $\overline{N}_1(e, G) > \overline{N}_1(H_0, G)$.

In case (a) the function $\overline{N}_1(\cdot, G)$ may be replaced (as noted above) by a dimension function defined on the prime power subgroups of G/H_0. Since for any q-subgroup K of G, $\dim R_1^K = \dim W(q)^K$, the subrepresentation $W(q)^\perp$ of $V(q)$ realizes the dimension function $\overline{N}_1(\cdot, G(q))$. Since $|G/H_0| < |G|$ by induction the tensor product of all the $W(q)^\perp$ contains a subrepresentation R^* of G/H_0 (which may be thought of as an unfaithful representation of G). R^* is a G-subrepresentation of V, the tensor product of all the $V(q)$. $R^* \oplus R_1$ is the required representation in this case.

In (b), where we have $\overline{N}_1(e, G) > \overline{N}_1(H_0, G)$, note that $\overline{N}_1(e, G) - \overline{N}_1(H_0, G)$ is still a minimum of all differences $\overline{N}_1(e, G) - \overline{N}_1(H, G)$. Since the function $\overline{N}_1(\cdot, G(Q))$ is realized by the subrepresentation $W(q)^\perp$ of $V(q)$, we can repeat the procedure again obtaining another irreducible subrepresentation R_2 or G with an associated dimension function $N_2(\cdot, G)$ defined on the prime power subgroups of G (it is the restriction of a dimension function defined on all subgroups of G). Letting $\overline{N}_2(\cdot, G) = \overline{N}_1(\cdot, G) = N_2(\cdot, G)$ we again have a dimension function satisfying conditions 1–5 and we proceed as above. Eventually we obtain a dimension function $\overline{N}_k(\cdot, G)$ such that $\overline{N}_k(e, G) = \overline{N}_k(H_0, G)$ ($k = N - N(H_0, G)$). By case (a) and induction there is a G-subrepresentation of \overline{V}, R^* realizing $\overline{N}_k(\cdot, G)$. The representation $R = R^* \oplus R_1 \oplus R_2 \oplus \cdots \oplus R_k$ is the required G-subrepresentation of \overline{V}.

Now suppose R is another G-subrepresentation such that for any prime power order subgroup H of G, $\dim R^H = N(H, G)$. Let H be an arbitrary subgroup of G and by induction assume $\dim \overline{R}_K^H - \dim R^k$ is even for all subgroups K of G with $|K| < |H|$. Select $K \leq H$ so that $|H/K|$ is an odd prime p (if this is not possible
then \(H \) is a 2-group and \(\dim \overline{R}^H - \dim R^H \) is zero). The group \(H/K = \mathbb{Z}_p \) acts on both \(\overline{R}^K \) and \(R^K \). It follows that both \(\dim \overline{R}^K - \dim \overline{R}^H \) and \(\dim R^K - \dim R^H \) are even and therefore \(\dim \overline{R}^H - \dim R^H \) is even. This completes the proof of the theorem. □

2. Proof of the corollary. Suppose \(G \) is a finite Abelian group with cyclic 2-Sylow subgroup, \(G(2) \), and suppose \(N(\ ,G) \) is a nonnegative integer valued function defined on the \(p \)-subgroups of \(G \), \(p \mid |G| \), satisfying conditions 1–4. By condition 4, for any proper subgroup \(H \) of \(G(2) \), \(N - N(H,G) \) is even. Suppose that \(N - N(G(2),G) \) is odd. Let \(V(2) \) realize \(N(\ ,G(2)) + 1 \). The function \(N^*(\ ,G) = N(\ ,G) + 1 \) corresponds to the \(G \)-action on the unreduced suspension on \(X \).

Now since \(N - N(G(2),G) \) is odd, \(V(2) \) has an irreducible summand of dimension 1 on which \(H \), the maximal proper subgroup of \(G(2) \), acts trivially and on which \(G(2) \) acts nontrivially. Denote this summand by \(W(2) \) for any \(p \neq 2 \) let \(W(p) \) be a one-dimensional trivial subrepresentation of \(V(p) \). Then \(R_1 \otimes_{p\mid|G|} W(p) \) is a 1-dimensional \(G \)-representation with a very large kernel and is a subrepresentation of \(\overline{V} = \bigotimes_{p\mid|G|} V(p) \). Let \(N_1(\ ,G) \) be the dimension function associated with \(R_1 \) \((N_1(\ ,G) \) is actually defined on all subgroups of \(G \)). Setting \(\overline{N}(\ ,G) = N^*(\ ,G) - N_1(\ ,G) \) we see that \(N - \overline{N}(H,G) \) is now even for all prime power subgroups of \(G \) so \(\overline{N}(\ ,G) \) satisfies conditions 1–5. By the argument §1, \(\overline{N}(\ ,G) \) is realized by a subrepresentation \(R \) of \(\bigotimes_{p\mid|G|} W(P)^\perp \), since \(\overline{N}(\ ,G(p)) \) is realized by \(W(p)^\perp \) for all \(p \mid |G| \). Then \(R \oplus R_1 \) is a subrepresentation of the \(G \)-representation \(\overline{V} \) which realizes \(N^*(\ ,G) \). This establishes the corollary.

EXAMPLES. Let \(G = \mathbb{Z}_6 \), \(N = 2 \), \(N(\mathbb{Z}_2, G) = 1 \), \(N(\mathbb{Z}_3, G) = 0 \). If we “suspend” \(N(\ ,G) \) we have \(N^* = 3 \), \(N^*(\mathbb{Z}_2, G) = 2 \), \(N^*(\mathbb{Z}_3, G) = 1 \). Then the construction of §§2 and 1 yeilds the 3-dimensional representation of \(G \), given on a generator by

\[
\begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & R(2\pi/3)
\end{pmatrix}
\]

where \(R(2\pi/3) \) is a 2 \times 2 rotation matrix.

REFERENCES

1. A. Borel et al., Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N. J.,
2. G. Bredon, Introduction to compact transformation groups, Academic Press, New York,

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MISSOURI–ST. LOUIS, ST. LOUIS, MISSOURI 63121