Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


The first eigenvalue of a scalene triangle

Authors: Robert Brooks and Peter Waksman
Journal: Proc. Amer. Math. Soc. 100 (1987), 175-182
MSC: Primary 58G25; Secondary 35P15
MathSciNet review: 883424
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove the lower bound

$\displaystyle {\lambda _1}(T) \geq \frac{{(L + \sqrt {4\pi A{)^2}} }}{{16{A^2}}}$

for a triangle $ T$ with area $ A$ and perimeter $ L$, where $ {\lambda _1}$ is the first eigenvalue for the Laplace operator with Dirichlet boundary conditions. We also present analogous estimates for an arbitrary convex polygon.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25, 35P15

Retrieve articles in all journals with MSC: 58G25, 35P15

Additional Information

PII: S 0002-9939(1987)0883424-1
Article copyright: © Copyright 1987 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia