EMBEDDING AND UNKNOTTING OF SOME POLYHEDRA
K. S. SARKARIA

ABSTRACT. If a compact polyhedron X^n, $n \geq 3$ (resp. $n \geq 2$), has the property that any two of its nonsingular points can be joined by an arc containing at most one singular point, then X^n embeds in \mathbb{R}^{2n} (resp. unknots in \mathbb{R}^{2n+1}).

The object of this note is to discuss a situation where the Penrose-Whitehead-Zeeman construction (see Zeeman [10, pp. 66-67]) works for a class of polyhedra much more general than manifolds. In particular reduced polyhedra satisfy our hypotheses. Thus Husch's unknotting theorem [4] is a special case of the result proved below.

Let X be a compact polyhedron of dimension n. A point x of X is called nonsingular (resp. singular) if there exists (resp. does not exist) a triangulation of X containing x in the interior of an n-simplex.

THEOREM. Let X be a compact polyhedron of dimension $n \geq 3$ (resp. $n \geq 2$). If any two nonsingular points of X can be joined by an arc containing at most one singular point, then X embeds in \mathbb{R}^{2n} (resp. unknots in \mathbb{R}^{2n+1}).

Embedding. General position yields a p.l. map $f: X^n \to \mathbb{R}^{2n}$ with a finite number of nonsingular double points. To explain our iterative construction it suffices to consider the case when there is just one pair $\{x_1, x_2\}$ of nonsingular double points, $f(x_1) = f(x_2)$. Let A be an arc, containing at most one singular point of X, and joining x_1 to x_2. Because $2 + n < 2n$ any general position point p of \mathbb{R}^{2n} is joinable to the circle $C = f(A)$ in such a way that the 2-disk $D = pC$ meets $f(X^n)$ in precisely C. By choosing triangulations of X^n (resp. \mathbb{R}^{2n}) in which A (resp. $f(X^n)$ and D) are full subcomplexes, and f is simplicial, we can find regular neighborhoods $N(A)$ of A in X, and $N(D)$ of D in \mathbb{R}^{2n}, such that $f(X - N(A)) \subseteq \mathbb{R}^{2n} - N(D)$, $f(\partial N(A)) \subseteq \partial N(D)$ and $f(N(A)) \subseteq N(D)$. If A has no singular point, $N(A)$ is an n-disk. If A has the unique singular point y, then $N(A)$ is p.l. homeomorphic to the closed star of y. In either case we see that $N(A)$ is a cone over its boundary $\partial N(A)$. Therefore we can extend the embedding...
Unknotting. General position yields a p.l. map \(f: X^n \times I \to \mathbb{R}^{2n+1} \times I \) whose 'ends' \(f_0, f_1 \) are two given embeddings of \(X^n \) in \(\mathbb{R}^{2n+1} \), and which has a finite number of nonsingular double points. Since any two nonsingular points of \(X^n \times I \) too can be joined by an arc having at most one singular point, we repeat the above construction to get a p.l. embedding \(g: X^n \times I \to \mathbb{R}^{2n+1} \times I \) with ends \(g_0 = f_0, g_1 = f_1 \). Thus \(f_0 \) and \(f_1 \) are concordant. By Lickorish [5, Theorem 6], concordance implies isotopy in codimensions \(\geq 3 \). Thus \(f_0 \) and \(f_1 \) are isotopic.

The above theorem is best possible in the sense that one cannot replace 'at most one' by 'at most two'. Recall that two \(n \)-spheres can link in \(\mathbb{R}^{2n+1} \). Thus, by joining two \(n \)-spheres, \(n \geq 1 \), by a thin 'ribbon', we get an example of an \(n \)-dimensional polyhedron which knots in \(\mathbb{R}^{2n+1} \) and for which any two nonsingular points can be joined by an arc containing at most two singular points. Another example of a polyhedron having this joinability property is the \(n \)-skeleton of an \(N \)-simplex, \(N \geq 2n + 1, n \geq 1 \). It was proved by van Kampen [7] and Flores [3] that, for \(N \geq 2n + 2 \), this polyhedron does not embed in \(\mathbb{R}^{2n} \).

Husch unknotting. A homogenously \(n \)-dimensional and connected polyhedron \(X^n \) is called reduced if it can be obtained from some other, \(Y^n \), by replacing a regular neighborhood \(N(T) \), of a maximal tree \(T \) of a triangulation of \(Y^n \), by a cone \(z \cdot \partial N(T) \). Since \(T \) is a maximal tree, for each \(x \in Y \) we can find a \(t \in T \) and an arc \(\alpha \) from \(x \) to \(t \) such that all points of \(\alpha - \{x, t\} \) are nonsingular points of \(Y^n \). From this it follows that any nonsingular point of \(X^n \) can be joined to \(\partial N(T) \) via nonsingular points of \(X^n \), and thus, that any two nonsingular points of \(X \) can be joined by an arc \(A \) through the base point \(z \), such that all points of \(A - \{z\} \) are nonsingular points of \(X^n \). Therefore the above theorem implies Husch's result [4] that all reduced polyhedra \(X^n, n \geq 2 \), unknot in \(\mathbb{R}^{2n+1} \). Note that the \(n \)-skeleton of a \(2n \)-simplex, \(n \geq 2 \), is not reduced, but does satisfy the hypothesis of the above theorem.

Bibliographical remarks. The case \(X^n = \) a connected pseudomanifold (resp. \(X^n = \) polyhedron obtained by making some identifications on the boundary of a connected manifold) of the above theorem is due to van Kampen [7] (resp. Edwards [2]). The construction given in the above proof (resp. general Penrose-Whitehead-Zeeman construction) is a variation (resp. a generalization) of a construction by which van Kampen [7] eliminates those pairs of double points, of a g.p. map \(f: |K^n| \to \mathbb{R}^{2n} \), which lie in adjacent \(n \)-simplices of \(K^n \). For other developments of van Kampen's ideas see also Shapiro [6], Wu [9] and Weber [8]. For more on singularities see Akin [1].

References

3. A. Flores, Über \(n \)-dimensionale Komplexe die im \(\mathbb{R}^{2n+1} \) absolut selbstverschlungen sind, Ergeb. Math. Kolloq. 6 (1933/34), 4–7.

DEPARTMENT OF MATHEMATICS, GEORGE MASON UNIVERSITY, FAIRFAX, VIRGINIA 22030