of finite groups

Author:
Dennis R. Harmon

Journal:
Proc. Amer. Math. Soc. **100** (1987), 229-232

MSC:
Primary 18F25; Secondary 16A54, 19A22, 19D35

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884456-X

MathSciNet review:
884456

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any ring with unity, let denote the kernel of the homomorphism induced by the augmentation . We show that if is a finite group of square-free order, then .

**[1]**H. Bass,*Algebraic**-theory*, Benjamin, New York, 1968. MR**0249491 (40:2736)****[2]**-,*Introduction to some methods of algebraic**-theory*, CBMS Regional Conf. Ser. In Math., no. 20, Amer. Math. Soc., Providence, R. I., 1974, pp. 1-68.**[3]**H. Bass, A. Heller and R. Swan,*The Whitehead group of a polynomial extension*, Publ. Math. Inst. Hautes Études Sci.**22**(964), 61-80. MR**0174605 (30:4806)****[4]**T.-Y. Lam,*Induction theorems for Grothendieck groups and Whitehead groups of finite groups*, Ann. Sci. École Norm. Sup.**1**(1968), 91-148. MR**0231890 (38:217)****[5]**B. Magurn,*of dihedral groups*, J. Algebra**51**(1978), 399-415. MR**0498804 (58:16843a)****[6]**R. Martin, Ph. D. dissertation, Columbia University, 1975.**[7]**D. Quillen,*Higher algebraic**-theory*. I, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1973, pp. 85-147. MR**0338129 (49:2895)****[8]**I. Reiner,*Maximal orders*, Academic Press, London and New York, 1975. MR**0393100 (52:13910)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
18F25,
16A54,
19A22,
19D35

Retrieve articles in all journals with MSC: 18F25, 16A54, 19A22, 19D35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884456-X

Keywords:
Hyperelementary induction,
Frobenius modules

Article copyright:
© Copyright 1987
American Mathematical Society