of finite groups
Author:
Dennis R. Harmon
Journal:
Proc. Amer. Math. Soc. 100 (1987), 229232
MSC:
Primary 18F25; Secondary 16A54, 19A22, 19D35
MathSciNet review:
884456
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For any ring with unity, let denote the kernel of the homomorphism induced by the augmentation . We show that if is a finite group of squarefree order, then .
 [1]
Hyman
Bass, Algebraic 𝐾theory, W. A. Benjamin, Inc., New
YorkAmsterdam, 1968. MR 0249491
(40 #2736)
 [2]
, Introduction to some methods of algebraic theory, CBMS Regional Conf. Ser. In Math., no. 20, Amer. Math. Soc., Providence, R. I., 1974, pp. 168.
 [3]
H.
Bass, A.
Heller, and R.
G. Swan, The Whitehead group of a polynomial extension, Inst.
Hautes Études Sci. Publ. Math. 22 (1964),
61–79. MR
0174605 (30 #4806)
 [4]
Tsityuen
Lam, Induction theorems for Grothendieck groups and Whitehead
groups of finite groups, Ann. Sci. École Norm. Sup. (4)
1 (1968), 91–148. MR 0231890
(38 #217)
 [5]
Bruce
Magurn, 𝑆𝐾₁ of dihedral groups, J.
Algebra 51 (1978), no. 2, 399–415. MR 0498804
(58 #16843a)
 [6]
R. Martin, Ph. D. dissertation, Columbia University, 1975.
 [7]
Daniel
Quillen, Higher algebraic 𝐾theory. I, Algebraic
𝐾theory, I: Higher 𝐾theories (Proc. Conf., Battelle
Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973,
pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
(49 #2895)
 [8]
I.
Reiner, Maximal orders, Academic Press [A subsidiary of
Harcourt Brace Jovanovich, Publishers], LondonNew York, 1975. London
Mathematical Society Monographs, No. 5. MR 0393100
(52 #13910)
 [1]
 H. Bass, Algebraic theory, Benjamin, New York, 1968. MR 0249491 (40:2736)
 [2]
 , Introduction to some methods of algebraic theory, CBMS Regional Conf. Ser. In Math., no. 20, Amer. Math. Soc., Providence, R. I., 1974, pp. 168.
 [3]
 H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Publ. Math. Inst. Hautes Études Sci. 22 (964), 6180. MR 0174605 (30:4806)
 [4]
 T.Y. Lam, Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci. École Norm. Sup. 1 (1968), 91148. MR 0231890 (38:217)
 [5]
 B. Magurn, of dihedral groups, J. Algebra 51 (1978), 399415. MR 0498804 (58:16843a)
 [6]
 R. Martin, Ph. D. dissertation, Columbia University, 1975.
 [7]
 D. Quillen, Higher algebraic theory. I, Lecture Notes in Math., vol. 341, SpringerVerlag, Berlin and New York, 1973, pp. 85147. MR 0338129 (49:2895)
 [8]
 I. Reiner, Maximal orders, Academic Press, London and New York, 1975. MR 0393100 (52:13910)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
18F25,
16A54,
19A22,
19D35
Retrieve articles in all journals
with MSC:
18F25,
16A54,
19A22,
19D35
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919870884456X
PII:
S 00029939(1987)0884456X
Keywords:
Hyperelementary induction,
Frobenius modules
Article copyright:
© Copyright 1987
American Mathematical Society
