Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ NK\sb 1$ of finite groups


Author: Dennis R. Harmon
Journal: Proc. Amer. Math. Soc. 100 (1987), 229-232
MSC: Primary 18F25; Secondary 16A54, 19A22, 19D35
DOI: https://doi.org/10.1090/S0002-9939-1987-0884456-X
MathSciNet review: 884456
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ R$ any ring with unity, let $ N{K_1}(R)$ denote the kernel of the homomorphism $ {\varepsilon _*}:{K_1}(R[t]) \to {K_1}(R)$ induced by the augmentation $ \varepsilon :t \to 0$. We show that if $ \pi $ is a finite group of square-free order, then $ N{K_1}(Z\pi ) = 0$.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Algebraic $ K$-theory, Benjamin, New York, 1968. MR 0249491 (40:2736)
  • [2] -, Introduction to some methods of algebraic $ K$-theory, CBMS Regional Conf. Ser. In Math., no. 20, Amer. Math. Soc., Providence, R. I., 1974, pp. 1-68.
  • [3] H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Publ. Math. Inst. Hautes Études Sci. 22 (964), 61-80. MR 0174605 (30:4806)
  • [4] T.-Y. Lam, Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci. École Norm. Sup. 1 (1968), 91-148. MR 0231890 (38:217)
  • [5] B. Magurn, $ S{K_1}$ of dihedral groups, J. Algebra 51 (1978), 399-415. MR 0498804 (58:16843a)
  • [6] R. Martin, Ph. D. dissertation, Columbia University, 1975.
  • [7] D. Quillen, Higher algebraic $ K$-theory. I, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1973, pp. 85-147. MR 0338129 (49:2895)
  • [8] I. Reiner, Maximal orders, Academic Press, London and New York, 1975. MR 0393100 (52:13910)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18F25, 16A54, 19A22, 19D35

Retrieve articles in all journals with MSC: 18F25, 16A54, 19A22, 19D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0884456-X
Keywords: Hyperelementary induction, Frobenius modules
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society