The theory of triangular matrix rings. II
Author:
M. E. Keating
Journal:
Proc. Amer. Math. Soc. 100 (1987), 235236
MSC:
Primary 18F25; Secondary 16A54, 19D45
MathSciNet review:
884458
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the upper triangular matrix ring defined by a pair of rings and and an bimodule . We use the QP definition of algebraic theory to give a quick proof that the homomorphism induced by the obvious ring epimorphism is an isomorphism.
 [1]
A.
J. Berrick and M.
E. Keating, The 𝐾theory of triangular matrix rings,
Applications of algebraic 𝐾theory to algebraic geometry and number
theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55,
Amer. Math. Soc., Providence, RI, 1986, pp. 69–74. MR 862629
(88a:18013), http://dx.doi.org/10.1090/conm/055.1/862629
 [2]
R.
Keith Dennis and Susan
C. Geller, 𝐾ᵢ of upper triangular
matrix rings, Proc. Amer. Math. Soc. 56 (1976), 73–78. MR 0404392
(53 #8194), http://dx.doi.org/10.1090/S00029939197604043925
 [3]
M.
E. Keating, The 𝐾theory of triangular rings and
orders, Algebraic 𝐾theory, number theory, geometry and
analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046,
Springer, Berlin, 1984, pp. 178–192. MR 750681
(86b:18013), http://dx.doi.org/10.1007/BFb0072022
 [4]
Daniel
Quillen, Higher algebraic 𝐾theory. I, Algebraic
𝐾theory, I: Higher 𝐾theories (Proc. Conf., Battelle
Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973,
pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
(49 #2895)
 [1]
 A. J. Berrick and M. E. Keating, The theory of triangular matrix rings, Applications of Algebraic theory to Algebraic Geometry and Number Theory, Contemp. Math., vol. 55, part I, Amer. Math. Soc., Providence, R. L., 1986, pp. 6974. MR 862629 (88a:18013)
 [2]
 R. K. Dennis and S. C. Geller, of upper triangular matrix rings, Proc. Amer. Math. Soc. 56 (1976), 7378. MR 0404392 (53:8194)
 [3]
 M. E. Keating, The theory of triangular matrix rings and orders, Algebraic theory, Number Theory, Geometry and Analysis, Bielefeld 1982, Lecture Notes in Math., vol. 1046, Springer, Berlin, and New York, 1984, pp. 178192. MR 750681 (86b:18013)
 [4]
 D. Quillen, Higher algebraic theory I, Algebraic theory 1, Batelle Institute Conference 1972, Lecture Notes in Math., vol. 341, Springer, Berlin, and New York, 1973, pp. 85147. MR 0338129 (49:2895)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
18F25,
16A54,
19D45
Retrieve articles in all journals
with MSC:
18F25,
16A54,
19D45
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198708844583
PII:
S 00029939(1987)08844583
Keywords:
Algebraic theory,
triangular matrix ring
Article copyright:
© Copyright 1987
American Mathematical Society
