The -theory of triangular matrix rings. II

Author:
M. E. Keating

Journal:
Proc. Amer. Math. Soc. **100** (1987), 235-236

MSC:
Primary 18F25; Secondary 16A54, 19D45

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884458-3

MathSciNet review:
884458

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the upper triangular matrix ring defined by a pair of rings and and an -bimodule . We use the QP definition of algebraic -theory to give a quick proof that the homomorphism

**[1]**A. J. Berrick and M. E. Keating,*The 𝐾-theory of triangular matrix rings*, Applications of algebraic 𝐾-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 69–74. MR**862629**, https://doi.org/10.1090/conm/055.1/862629**[2]**R. Keith Dennis and Susan C. Geller,*𝐾ᵢ of upper triangular matrix rings*, Proc. Amer. Math. Soc.**56**(1976), 73–78. MR**0404392**, https://doi.org/10.1090/S0002-9939-1976-0404392-5**[3]**M. E. Keating,*The 𝐾-theory of triangular rings and orders*, Algebraic 𝐾-theory, number theory, geometry and analysis (Bielefeld, 1982) Lecture Notes in Math., vol. 1046, Springer, Berlin, 1984, pp. 178–192. MR**750681**, https://doi.org/10.1007/BFb0072022**[4]**Daniel Quillen,*Higher algebraic 𝐾-theory. I*, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR**0338129**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
18F25,
16A54,
19D45

Retrieve articles in all journals with MSC: 18F25, 16A54, 19D45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884458-3

Keywords:
Algebraic -theory,
triangular matrix ring

Article copyright:
© Copyright 1987
American Mathematical Society