The -theory of triangular matrix rings. II

Author:
M. E. Keating

Journal:
Proc. Amer. Math. Soc. **100** (1987), 235-236

MSC:
Primary 18F25; Secondary 16A54, 19D45

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884458-3

MathSciNet review:
884458

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the upper triangular matrix ring defined by a pair of rings and and an -bimodule . We use the QP definition of algebraic -theory to give a quick proof that the homomorphism

**[1]**A. J. Berrick and M. E. Keating,*The**-theory of triangular matrix rings*, Applications of Algebraic -theory to Algebraic Geometry and Number Theory, Contemp. Math., vol. 55, part I, Amer. Math. Soc., Providence, R. L., 1986, pp. 69-74. MR**862629 (88a:18013)****[2]**R. K. Dennis and S. C. Geller,*of upper triangular matrix rings*, Proc. Amer. Math. Soc.**56**(1976), 73-78. MR**0404392 (53:8194)****[3]**M. E. Keating,*The**-theory of triangular matrix rings and orders*, Algebraic -theory, Number Theory, Geometry and Analysis, Bielefeld 1982, Lecture Notes in Math., vol. 1046, Springer, Berlin, and New York, 1984, pp. 178-192. MR**750681 (86b:18013)****[4]**D. Quillen,*Higher algebraic**-theory*I, Algebraic -theory 1, Batelle Institute Conference 1972, Lecture Notes in Math., vol. 341, Springer, Berlin, and New York, 1973, pp. 85-147. MR**0338129 (49:2895)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
18F25,
16A54,
19D45

Retrieve articles in all journals with MSC: 18F25, 16A54, 19D45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884458-3

Keywords:
Algebraic -theory,
triangular matrix ring

Article copyright:
© Copyright 1987
American Mathematical Society