Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The $ K$-theory of triangular matrix rings. II


Author: M. E. Keating
Journal: Proc. Amer. Math. Soc. 100 (1987), 235-236
MSC: Primary 18F25; Secondary 16A54, 19D45
DOI: https://doi.org/10.1090/S0002-9939-1987-0884458-3
MathSciNet review: 884458
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ T$ be the upper triangular matrix ring defined by a pair of rings $ R$ and $ S$ and an $ R - S$-bimodule $ M$. We use the QP definition of algebraic $ K$-theory to give a quick proof that the homomorphism

$\displaystyle {\pi _m}:{K_m}(T) \to {K_m}(R) \oplus {K_m}(S),\quad m \geqslant 0,$

induced by the obvious ring epimorphism is an isomorphism.

References [Enhancements On Off] (What's this?)

  • [1] A. J. Berrick and M. E. Keating, The $ K$-theory of triangular matrix rings, Applications of Algebraic $ K$-theory to Algebraic Geometry and Number Theory, Contemp. Math., vol. 55, part I, Amer. Math. Soc., Providence, R. L., 1986, pp. 69-74. MR 862629 (88a:18013)
  • [2] R. K. Dennis and S. C. Geller, $ {K_i}$ of upper triangular matrix rings, Proc. Amer. Math. Soc. 56 (1976), 73-78. MR 0404392 (53:8194)
  • [3] M. E. Keating, The $ K$-theory of triangular matrix rings and orders, Algebraic $ K$-theory, Number Theory, Geometry and Analysis, Bielefeld 1982, Lecture Notes in Math., vol. 1046, Springer, Berlin, and New York, 1984, pp. 178-192. MR 750681 (86b:18013)
  • [4] D. Quillen, Higher algebraic $ K$-theory I, Algebraic $ K$-theory 1, Batelle Institute Conference 1972, Lecture Notes in Math., vol. 341, Springer, Berlin, and New York, 1973, pp. 85-147. MR 0338129 (49:2895)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18F25, 16A54, 19D45

Retrieve articles in all journals with MSC: 18F25, 16A54, 19D45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0884458-3
Keywords: Algebraic $ K$-theory, triangular matrix ring
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society