Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A generalization of the flat cone condition for regularity of solutions of elliptic equations


Author: Gary M. Lieberman
Journal: Proc. Amer. Math. Soc. 100 (1987), 289-294
MSC: Primary 35B45; Secondary 31B30, 35J67
MathSciNet review: 884468
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Barrier arguments are used to prove regularity of boundary points for a large class of uniformly elliptic operators when the domain satisfies a geometric condition. The condition is that the exterior of the domain contains a suitable lower dimensional set.


References [Enhancements On Off] (What's this?)

  • [1] Yu. A. Alkhutov, On the regularity of boundary points with respect to the Dirichlet problem for second-order elliptic equations, Mat. Zametki 30 (1981), no. 3, 333–342, 461 (Russian). MR 633981
  • [2] A. Azzam, Smoothness properties of solutions of mixed boundary value problems for elliptic equations in sectionally smooth 𝑛-dimensional domains, Ann. Polon. Math. 40 (1981), no. 1, 81–93. MR 645800
  • [3] Patricia Bauman, A Wiener test for nondivergence structure, second-order elliptic equations, Indiana Univ. Math. J. 34 (1985), no. 4, 825–844. MR 808829, 10.1512/iumj.1985.34.34045
  • [4] Kai Lai Chung, Lectures from Markov processes to Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR 648601
  • [5] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • [6] Olga A. Ladyzhenskaya and Nina N. Ural′tseva, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR 0244627
  • [7] E. M. Landis, $ s$-capacity and its application to the study of solutions of a second order elliptic equation with discontinuous coefficients, Math. USSR-Sb. 5 (1968), 177-204.
  • [8] Gary M. Lieberman, Mixed boundary value problems for elliptic and parabolic differential equations of second order, J. Math. Anal. Appl. 113 (1986), no. 2, 422–440. MR 826642, 10.1016/0022-247X(86)90314-8
  • [9] W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 43–77. MR 0161019
  • [10] Keith Miller, Barriers on cones for uniformly elliptic operators, Ann. Mat. Pura Appl. (4) 76 (1967), 93–105 (English, with Italian summary). MR 0221087
  • [11] Keith Miller, Exceptional boundary points for the nondivergence equation which are regular for the Laplace equation and vice-versa, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 315–330. MR 0229961
  • [12] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825
  • [13] Carlo Pucci, Regolarità alla frontiera di soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 65 (1964), 311–328 (Italian, with English summary). MR 0171990

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B45, 31B30, 35J67

Retrieve articles in all journals with MSC: 35B45, 31B30, 35J67


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0884468-6
Article copyright: © Copyright 1987 American Mathematical Society