A generalization of the flat cone condition for regularity of solutions of elliptic equations

Author:
Gary M. Lieberman

Journal:
Proc. Amer. Math. Soc. **100** (1987), 289-294

MSC:
Primary 35B45; Secondary 31B30, 35J67

MathSciNet review:
884468

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Barrier arguments are used to prove regularity of boundary points for a large class of uniformly elliptic operators when the domain satisfies a geometric condition. The condition is that the exterior of the domain contains a suitable lower dimensional set.

**[1]**Yu. A. Alkhutov,*On the regularity of boundary points with respect to the Dirichlet problem for second-order elliptic equations*, Mat. Zametki**30**(1981), no. 3, 333–342, 461 (Russian). MR**633981****[2]**A. Azzam,*Smoothness properties of solutions of mixed boundary value problems for elliptic equations in sectionally smooth 𝑛-dimensional domains*, Ann. Polon. Math.**40**(1981), no. 1, 81–93. MR**645800****[3]**Patricia Bauman,*A Wiener test for nondivergence structure, second-order elliptic equations*, Indiana Univ. Math. J.**34**(1985), no. 4, 825–844. MR**808829**, 10.1512/iumj.1985.34.34045**[4]**Kai Lai Chung,*Lectures from Markov processes to Brownian motion*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR**648601****[5]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[6]**Olga A. Ladyzhenskaya and Nina N. Ural′tseva,*Linear and quasilinear elliptic equations*, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR**0244627****[7]**E. M. Landis,*-capacity and its application to the study of solutions of a second order elliptic equation with discontinuous coefficients*, Math. USSR-Sb.**5**(1968), 177-204.**[8]**Gary M. Lieberman,*Mixed boundary value problems for elliptic and parabolic differential equations of second order*, J. Math. Anal. Appl.**113**(1986), no. 2, 422–440. MR**826642**, 10.1016/0022-247X(86)90314-8**[9]**W. Littman, G. Stampacchia, and H. F. Weinberger,*Regular points for elliptic equations with discontinuous coefficients*, Ann. Scuola Norm. Sup. Pisa (3)**17**(1963), 43–77. MR**0161019****[10]**Keith Miller,*Barriers on cones for uniformly elliptic operators*, Ann. Mat. Pura Appl. (4)**76**(1967), 93–105 (English, with Italian summary). MR**0221087****[11]**Keith Miller,*Exceptional boundary points for the nondivergence equation which are regular for the Laplace equation and vice-versa*, Ann. Scuola Norm. Sup. Pisa (3)**22**(1968), 315–330. MR**0229961****[12]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR**762825****[13]**Carlo Pucci,*Regolarità alla frontiera di soluzioni di equazioni ellittiche*, Ann. Mat. Pura Appl. (4)**65**(1964), 311–328 (Italian, with English summary). MR**0171990**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35B45,
31B30,
35J67

Retrieve articles in all journals with MSC: 35B45, 31B30, 35J67

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1987-0884468-6

Article copyright:
© Copyright 1987
American Mathematical Society