Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Functions in the Fresnel class


Authors: K. S. Chang, G. W. Johnson and D. L. Skoug
Journal: Proc. Amer. Math. Soc. 100 (1987), 309-318
MSC: Primary 42B10; Secondary 28C20, 60G15, 81C35
DOI: https://doi.org/10.1090/S0002-9939-1987-0884471-6
MathSciNet review: 884471
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ H$ be a separable infinite-dimensional Hilbert space over $ {\mathbf{R}}$. The Fresnel class $ \mathcal{F}(H)$ of $ H$ consists of all Fourier-Stieltjes transforms of bounded Borel measures on $ H$. There are several results insuring that various functions of interest in connection with the Feynman integral and quantum mechanics are in $ \mathcal{F}(H)$. We give a theorem which has most of these results as corollaries as well as many further corollaries involving the reproducing kernel Hilbert spaces of Gaussian stochastic processes.


References [Enhancements On Off] (What's this?)

  • [1] S. Albeverio, Ph. Blanchard, and R. Høegh-Krohn, Feynman path integrals and the trace formula for the Schrödinger operators, Comm. Math. Phys. 83 (1982), 49-76. MR 648358 (84a:81010)
  • [2] S. Albeverio and R. Høegh-Krohn, Feynman path integrals and the corresponding method of stationary phase, Feynman Path Integrals, Marseille, 1978, Lecture Notes in Physics, vol. 106, Springer, Berlin, 1978, pp. 3-57. MR 553075 (80k:81035)
  • [3] -, Mathematical theory of Feynman path integrals, Lecture Notes in Math., vol. 523, Springer, Berlin, 1976. MR 0495901 (58:14535)
  • [4] J. Bertrand and B. Gaveau, Transformation canonique et renormalization pour certaines équations d'évolution, J. Funct. Anal. 50 (1983), 81-99. MR 690000 (85h:81027)
  • [5] R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functions, Analytic Functions, Kozubnik, 1979, Lecture Notes in Math., vol. 798, Springer, Berlin, 1980, pp. 18-67. MR 577446 (83f:46059)
  • [6] -, A simple definition of the Feynman intergral, with applications, Mem. Amer. Math. Soc. No. 288, vol. 46, 1983, pp. 1-46. MR 719157 (86c:81029)
  • [7] K. S. Chang, G. W. Johnson, and D. L. Skoug, Necessary and sufficient conditions for the Fresnel integrability of certain classes of functions, J. Korean Math. Soc. 21 (1984), 21-29. MR 760389 (86b:46070)
  • [8] -, The Feynman integral of quadratic potentials depending on two time variables, Pacific J. Math. 122 (1986), 11-33. MR 825220 (88c:28012)
  • [9] A. M. Chebotarev, $ \tau $-mappings and functional integrals, Soviet Math. Dokl. 16 (1975), 1536-1540.
  • [10] Ph. Combe, R. Høegh-Krohn, R. Rodriguez, M. Siruque, and M. Siruque-Collin, Poisson processes on groups and Feynman path integrals, Comm. Math. Phys. 77 (1980), 269-288. MR 594304 (82c:81040)
  • [11] D. Elworthy and A. Truman, Feynman maps, Cameron-Martin formulae and anharmonic oscillators, Ann. Inst. H. Poincaré 41 (1984), 115-142. MR 769152 (86f:81051)
  • [12] P. Exner, Open quantum systems and Feynman integrals, Reidel, Dordrecht, 1985. MR 766559 (86h:81012)
  • [13] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20 (1948), 367-387. MR 0026940 (10:224b)
  • [14] T. Hida, Brownian motion, Springer, New York, 1980. MR 562914 (81a:60089)
  • [15] G. W. Johnson, The equivalence of two approaches to the Feynman integral, J. Math. Phys. 23 (1982), 2090-2096. MR 680005 (85d:81047)
  • [16] -, An unsymmetric Fubini theorem, Amer. Math. Monthly 91 (1984), 131-133. MR 729555 (85f:28004)
  • [17] G. W. Johnson and M. L. Lapidus, Generalized Dyson series, generalized Feynman diagrams, the Feynman integral, and Feynman's operational calculus, Mem. Amer. Math. Soc. No. 351, vol. 62, 1986, pp. 1-78. MR 849943 (88f:81034)
  • [18] G. W. Johnson and D. L. Skoug, Notes on the Feynman integral. I, Pacific J. Math. 93 (1981), 313-324. MR 623567 (85k:81070a)
  • [19] -, Notes on the Feynman integral. II, J. Funct. Anal. 41 (1981), 277-289. MR 619952 (85k:81070b)
  • [20] -, Notes on the Feynman integral. III: The Schroedinger equation, Pacific J. Math. 105 (1983), 321-358. MR 691608 (85k:81070c)
  • [21] -, Stability theorems for the Feynman integral, Suppl. Rendi. Circ. Mat. Palermo (Proc. Conf., Palermo, October, 1984) (to appear).
  • [22] G. Kallianpur, The role of reproducing kernel Hilbert spaces in the study of Gaussian processes, Advances in Probability, Vol. 2 (Peter Ney, editor), Dekker, New York, 1970, pp. 49-83. MR 0283866 (44:1096)
  • [23] G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic Analysis and Applications (M.A. Pinsky, editor), Dekker, New York, 1984. MR 776983 (86m:60007)
  • [24] G. Kallianpur, D. Kannan, and R. L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula, Ann. Inst. H. Poincaré 21 (1985), 323-361. MR 823080 (87f:28008)
  • [25] J. Kuelbs, A strong convergence theorem for Banach space valued random variables, Ann. Probab. 4 (1976), 744-771. MR 0420771 (54:8783)
  • [26] H.-H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., vol. 463, Springer, New York, 1975. MR 0461643 (57:1628)
  • [27] M. L. Lapidus, The differential equation for the Feynman-Kac formula with a Lebesgue-Stieltjes measure, Lett. Math. Phys. 11 (1986), 1-13. MR 824670 (87d:58033)
  • [28] J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco, Calif., 1965. MR 0198505 (33:6660)
  • [29] C. Park and D. L. Skoug, The Feynman integral of quadratic potentials depending on $ n$ time variables (submitted for publication).
  • [30] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 0210528 (35:1420)
  • [31] L. Streit and T. Hida, Generalized Brownian functionals and the Feynman integral, Stochastic Process. Appl. 16 (1984), 1-15. MR 723643 (86d:60048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B10, 28C20, 60G15, 81C35

Retrieve articles in all journals with MSC: 42B10, 28C20, 60G15, 81C35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0884471-6
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society