The complement of the stable manifold for one-dimensional endomorphisms

Author:
Carlos Arteaga

Journal:
Proc. Amer. Math. Soc. **100** (1987), 367-370

MSC:
Primary 58F12; Secondary 54H20, 58F20

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884481-9

MathSciNet review:
884481

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote either the circle or the closed interval and let be a endomorphism of . Let be the complement of the union of the stable manifolds of the sinks of . In this paper we give necessary and sufficient conditions for to consist of eventually periodic points.

**[1]**L. Block,*Homoclinic points of mappings of the interval*, Proc. Amer. Math. Soc.**72**(1978), 576-580. MR**509258 (81m:58063)****[2]**L. Block and J. Franke,*The chain recurrent set for maps of the interval*, Proc. Amer. Math. Soc.**87**(1983), 723-727. MR**687650 (84j:58103)****[3]**L. Block, E. M. Coven, I. Mulvey, and Z. Nitecki,*Homoclinic and non-wandering points for maps of the circle*, Ergodic Theory Dynamical Systems**3**(1983), 521-532. MR**753920 (86b:58101)****[4]**L. Block and J. Franke,*The chain recurrent set for maps of the circle*, Proc. Amer. Math. Soc.**92**(1984), 597-603. MR**760951 (86b:58073)****[5]**V. V. Fedorenko and A. N. Sarkovskii,*Continuous mappings of the interval with closed sets of periodic points*, Introduction to Differential and Diffferential-Difference Equations, Kiev, 1980, pp. 137-145. (Russian) MR**621132 (83i:58083)****[6]**R. Mane,*Teoria ergodica*, Projeto Euclides, IMPA, Rio de Janeiro, 1983. MR**800092 (87d:58085)****[7]**Z. Nitecki,*Maps of the interval with closed periodic set*, Proc. Amer. Math. Soc.**85**(1982), 451-456. MR**656122 (83k:58067)****[8]**J.-C. Xiong,*Continuous self-maps of the closed interval whose periodic points form a closed set*, J. China Univ. Sci. Tech.**11**(1981), 14-23. MR**701781 (84h:58124a)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F12,
54H20,
58F20

Retrieve articles in all journals with MSC: 58F12, 54H20, 58F20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0884481-9

Article copyright:
© Copyright 1987
American Mathematical Society