Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on Gulko compact spaces

Author: Gary Gruenhage
Journal: Proc. Amer. Math. Soc. 100 (1987), 371-376
MSC: Primary 54D30; Secondary 54E35
MathSciNet review: 884482
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that every Eberlein compact space has a dense $ {G_\delta }$ metrizable subset. We answer a question of M. Talagrand by showing that the same is true for the wider class of Gul'ko compact spaces. We also show that Gul'ko compact spaces satisfy a certain covering property hereditarily.

References [Enhancements On Off] (What's this?)

  • [AN] S. Argyros and S. Negrepontis, On weakly $ \mathcal{K}$-countable determined spaces of continuous functions, Proc. Amer. Math. Soc. 87 (1983), 731-736. MR 687652 (85b:54035)
  • [BRW] Y. Benyamini, M. E. Rudin, and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. MR 0625889 (58:30065)
  • [CN] W. W. Comfort and S. Negrepontis, Chain conditions in topology, Cambridge Tracts in Math., Vol. 79, Cambridge Univ. Press, Cambridge, 1982. MR 665100 (84k:04002)
  • [Ga] R. J. Gardner, The regularity of Borel measures and Borel measure compactness, Proc. London Math. Soc. (3) 30 (1975), 95-113. MR 0367145 (51:3387)
  • [GJ] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 0116199 (22:6994)
  • [G1] G. Gruenhage, Covering properties on $ {X^2}\backslash \Delta ,\;W$-sets, and compact subsets of $ \Sigma $-products, Topology Appl. 17 (1984), 287-304. MR 752278 (86e:54029)
  • [G2] -, On a Corson compact space of Todorcevic (to appear).
  • [Gu] S. P. Gul'ko, On the structure of spaces of continuous funtions and their complete paracompactness, Russian Math. Surveys 34 (1979), 36-44 (=Uspekhi Math. Nauk 34 (1979), 33-40). MR 562814 (81b:54017)
  • [M] S. Mercourakis, On weakly countably determined Banach spaces, preprint. MR 871678 (88a:46015)
  • [MR] E. Michael and M. E. Rudin, A note on Eberlein compacts, Pacific J. Math. 72 (1977), 487-495. MR 0478092 (57:17584a)
  • [N] S. Negrepontis, Banach spaces and topology, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984. MR 776619 (85k:54001)
  • [Na] I. Namioka, Separate and joint continuity, Pacific J. Math. 51 (1974), 515-531. MR 0370466 (51:6693)
  • [R] H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83-111. MR 0417762 (54:5810)
  • [S] W. Schachermeyer, Eberlein-compacts et spaces de Radon, C. R. Acad. Sci. Paris Ser. A 284 (1977), 405-407. MR 0440011 (55:12892)
  • [So] G. A. Sokolov, On some classes of compact spaces lying in $ \Sigma $-products, Comm. Math. Univ. Carolin. 25 (1984), 219-231. MR 768809 (86h:54017)
  • [TI] M. Talagrand, Sur une conjecture de H. H. Corson, Bull. Sci. Math. 99 (1975), 211-212. MR 0430752 (55:3757)
  • [T2] -, Espaces de Banach faiblement $ \mathcal{K}$-analytiques, Ann. of Math. (2) 110 (1979), 407-438. MR 554378 (81a:46021)
  • [T3] -, Deux generalisations d'un theoreme de I. Namioka, Pacific J. Math. 81 (1979), 239-251. MR 543747 (80k:54018)
  • [To] S. Todorcevic, Trees and linearly ordered sets, Handbook of Set-Theoretic Topologyy (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984. MR 776625 (86h:54040)
  • [V] L. Vasak, On one generalization of weakly compactly generated Banach spaces, Studai Math. 70 (1981), 11-19. MR 646957 (83h:46028)
  • [Y] N. N. Yakovlev, On bicompacta in $ \Sigma $-products and related spaces, Comm. Math. Univ. Carolin. 21 (1980), 263-282. MR 580682 (81m:54036)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D30, 54E35

Retrieve articles in all journals with MSC: 54D30, 54E35

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society