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SHORTER NOTES

The purpose of this department is to publish very short papers of unusually

polished character, for which there is no other outlet.

THE ROOTS OF A POLYNOMIAL VARY CONTINUOUSLY
AS A FUNCTION OF THE COEFFICIENTS

GARY HARRIS AND CLYDE MARTIN

ABSTRACT. We present an elementary topological proof that the roots of a

polynomial vary continuously as a function of the coefficients.

It is, or should be, common knowledge that the roots of a polynomial over C

vary continuously as a function of the coefficients. Here we present an elementary

topological proof of this important fact. Of course, the coefficients vary continu-

ously as a function of the roots; indeed, the coefficients can be given as a symmetric

polynomial mapping of the roots. It is natural to ask if this mapping is continuously

invertible, and this is the question we answer in Theorem A.

Before becoming more precise, we should mention that proofs, probably in large

numbers, exist in the literature in differing contexts. For example, for polynomials

of degree 2, 3, or 4, Galois theory tells us the roots can be found by explicit formulas

of the coefficients involving radicals. ([4] is a good source.) However, a general

study of continuity can still be tricky. For polynomials without multiple roots, the

Complex Implicit Function Theorem can be used to show the roots vary analytically

with the coefficients [1]. For general polynomials our Theorem B follows from an

application of Rouché's theorem [3].

As stated above, our purpose is to give a topological proof that the roots of a

polynomial are given as a continuous function of the coefficients. We may assume

all polynomials P of degree n are normalized so

P(z) = zn + axzn-1 + --- + an.

We will identify P with the vector o = (ai,... ,an) in C™.  By the Fundamental

Theorem of Algebra, we know P can be factored as

P{*) = f[(*-Çi)j=i
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for a unique sequence {fi,. ■., £n} of elements of C. We also know for each 1 <

3 <n,

for symmetric polynomials ax, ■ ■ ■, an in n variables. Let a : Cn —* Cn be the

continuous mapping defined by

»(0 = (»i(0.-•-,*«(€))•
We are assuming C" has the euclidean norm and are using the notation £ =

(íii • • • ) in)- It follows from the Fundamental Theorem of Algebra that a is surjec-

tive.

The map a is not injective since it is independent of the arrangement of the

components of the vector £. For p G Sn, the group of permutations on n elements,

and £ = (iji,..., £n) in Cn let £M = (iM(i),..., ÍM(„))- We define an equivalence

relation on Cn by

£ ~ ß o 3p G Sn 3 e„ = ß.

Let Cn/ ~ be the quotient space endowed with the quotient topology induced by

the canonical projection tt : Cn —> Cn/ ~, and let à be the unique mapping of C"/ ~

onto Cn for which à o it = a. It follows that ¿r is a continuous bijection. (All the

facts we use about the quotient topology can be found in any good text on topology,

for example [2, pp. 94-99].)

We can now prove our

THEOREM A.     The mapping a: Cn/~—> Cn is a homeomorphism.

PROOF. Let d be the metric defined on Cn/~ by

d(7r(0,*(/?)) = min{|e' - ß'\: Í' e tt(0 and ß' G *(ß)}.

To see that d is a metric let £,/?, n G C™. Clearly

d(7r(i), irfjS)) = min{|£ - ß'\ : ß' G n(ß)}-

We can choose n' G Tr(r¡) so that d(7r(i),7r(i/)) = |£ — ij'|. For each ß' G ir(ß),

\t-P\<\t-rf\ + W-P\. So

d(n(OMß)) < miníli-^'l + \r,'- ß'\: ß'Grr(ß)}

= d(rr(t:),n(ri))+d(n(v)Mß))-

It follows immediately that 7r: C™ —> C™/~ is continuous if Cn/~ is endowed with

the topology induced by d. Moreover for any set A in C" we have 7r_1(7r(A)) is

open (closed) if A is open (closed). Thus 7r is an open and closed map. Hence

the topology induced by d is the quotient topology. Let M > 0 be given and

let B(0, M) denote the open ball about 0 in Cn/ ~ of radius M. We claim that

â\B(0 M> is a homeomorphism. It suffices to show that â is closed. Let C C B(0, M)

be closed, then 7r_1(C) is a closed and bounded subset of Cn, hence compact. Thus

â(C) = cr(n~1(C)) is compact, and hence closed in Cn. We can now complete the

proof by showing that à: Cn/~—► Cn is open. Let U be an open subset of C"/~

and xGU. Choose e > 0 and M > 0 so that B(x, s) C U and B(x, s) C B(0, M).

Since â is open on B(0, M) it follows that â(x) is in the interior of a(B(x, e)). Since

x was arbitrary this completes the proof.
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Let r: Cn —> Cn/ ~ denote the continuous inverse of à. Given a G Cn (a

identified with a polynomial P as above) and e > 0, Theorem A tells us there

exists 6 > 0 so that r(B(a, 6)) C B(r(a),e). Writing out what this means in terms

of the euclidean metric on Cn and the metric d on Cn/~, we obtain

Theorem B.    Suppose

s

P(z) = zn+ axz"-1 + ••• + o„ = J[(z- ÇjV

j=i

for distinct ii,...,is.   Let s > 0 be given so that i ^ j implies that B(£i,e)

n ß(ij, e) = 0. Then there exists 6 > 0 so that b G B(a, 6) implies the polynomial

Q(z) = zn + b1zn'1 + ---+bn

has exactly mj roots (counting multiplicity) in B(£j,e).
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