Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A translation principle for Kac-Moody algebras

Author: Wayne Neidhardt
Journal: Proc. Amer. Math. Soc. 100 (1987), 395-400
MSC: Primary 17B10; Secondary 17B67
MathSciNet review: 891132
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{g}$ be a Kac-Moody algebra defined by a symmetrizable generalized Cartan matrix. We show that the multiplicity of the irreducible module $ L({w_1} \cdot \lambda )$ in the Verma module $ M({w_2}\cdot\lambda )$ depends only on the elements $ {w_1}$ and $ {w_2}$ of the Weyl group, and not on the dominant integral weight $ \lambda $, generalizing the translation principle of Jantzen for finite-dimensional algebras.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B10, 17B67

Retrieve articles in all journals with MSC: 17B10, 17B67

Additional Information

PII: S 0002-9939(1987)0891132-6
Article copyright: © Copyright 1987 American Mathematical Society