Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Group algebras and algebras of Golod-Shafarevich


Author: Plamen N. Siderov
Journal: Proc. Amer. Math. Soc. 100 (1987), 424-428
MSC: Primary 16A27
DOI: https://doi.org/10.1090/S0002-9939-1987-0891139-9
MathSciNet review: 891139
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In [2], Golod, using results of Golod and Shafarevich [1], has constructed a finitely generated algebra $ A = K\left\langle {{y_1}, \ldots ,{y_d}} \right\rangle $, over any field $ K$, such that the ideal generated by $ {y_1}, \ldots ,{y_d}$ is nil, but $ {\dim _K}A = \infty $. Moreover, when char $ K = p > 0$, the subgroup $ G$ of the group of units of $ A$, generated by $ 1 + {y_1}, \ldots ,1 + {y_d}$, is an infinite $ p$-group. The main purpose of the present paper is to show that $ K[G]$, the group algebra of $ G$ over $ K$, is not isomorphic to $ A$ for "most" Golod-Shafarevich groups $ G$.


References [Enhancements On Off] (What's this?)

  • [1] E. S. Golod and I. R. Shafarevich, On the class field tower, Izv. Akad. Nauk. SSSR Ser. Mat. 28 (1964), 261-272. (Russian) MR 0161852 (28:5056)
  • [2] E. S. Golod, On nil-algebras and finitely approximable $ p$-groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 273-276. (Russian) MR 0161878 (28:5082)
  • [3] -, On some problems of Burnside type, Proc. Internat. Congr. Math., Moscow, 1966, pp. 284-289. MR 0238880 (39:240)
  • [4] A. G. Kurosh, Problems in the theory of rings, related to Burnside problem on periodic groups, Izv. Akad. Nauk SSSR Ser. Mat. 5 (1941), 233-241.
  • [5] I. Kaplansky, Problems in the theory of rings, Report of Conference of Linear Algebras, NASNRC Publ. 502, Washington, D.C., 1957, pp. 1-3. MR 0096696 (20:3179)
  • [6] W. Borho and H. Kraff, Über die Gelfand-Kirilov Dimension, Math. Ann. 220 (1976), 1-24. MR 0412240 (54:367)
  • [7] R. I. Grigorchuk, Degrees of growth of finitely generated groups, and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939-985. (Russian) MR 764305 (86h:20041)
  • [8] A. I. Mal'tsev, Generalized nilpotent algebras and their associated groups, Mat. Sb. 25 (1949), 347-366. MR 0032644 (11:323b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A27

Retrieve articles in all journals with MSC: 16A27


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0891139-9
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society