Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A weak GAGA statement for arbitrary morphisms

Author: Amnon Neeman
Journal: Proc. Amer. Math. Soc. 100 (1987), 429-432
MSC: Primary 32C35; Secondary 14F05
MathSciNet review: 891140
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:X \to Y$ be an arbitrary morphism of schemes of finite type over $ {\mathbf{C}}$, and let $ {f^{{\text{an}}}}$ be the associated map of analytic spaces. Let $ \mathcal{S}$ be a coherent sheaf on $ X$. Then $ {({f_*}\mathcal{S})^{{\text{an}}}} \to f_*^{{\text{an}}}({\mathcal{S}^{{\text{an}}}})$ is injective.

References [Enhancements On Off] (What's this?)

  • [N] A. Neeman, GAGA for quotient varieties (to appear).
  • [GAGA] Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42 (French). MR 0082175
  • [S] Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37–135. MR 573821

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32C35, 14F05

Retrieve articles in all journals with MSC: 32C35, 14F05

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society