POLYNOMIALS OF AN INNER FUNCTION
WHICH ARE EXPOSED POINTS IN H^1

JYUNJI INOUE AND TAKAHIKO NAKAZI

Abstract. It is known that if $p(z)$ is an analytic polynomial which has no zeros in
the open unit disc and distinct zeros in the unit circle, then $p(z)/\|p(z)\|_1$ is an
exposed point of the unit ball of the Hardy space H^1.

In this paper, it is proved that for a bounded analytic function f with $\|f\|_\infty \leq 1$, $p(f)/\|p(f)\|_1$ is also an exposed point.

Let U be the open unit disc in the complex plane and let ∂U be the boundary of
U. If f is analytic in U and $\int_{-\pi}^{\pi} \log|f(re^{i\theta})| \, d\theta$ is bounded for $0 \leq r < 1$, then
$f(e^{i\theta})$, which we define to be $\lim_{r \to 1} f(re^{i\theta})$, exists almost everywhere on ∂U. If
\[
\lim_{r \to 1} \int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| \, d\theta = \int_{-\pi}^{\pi} \log^+ |f(e^{i\theta})| \, d\theta,
\]
then f is said to be in the class N_+. The set of all boundary functions in N_+ is
denoted by N_+ again. For $0 < p \leq \infty$, the Hardy space H^p is defined by $N_+ \cap L^p$.
A denotes the disc algebra, that is $A = \{ f : f$ is continuous on \overline{U} and analytic in $U \}$. If
h in N_+ has the form
\[
h(z) = \exp \left(\int_{-\pi}^{\pi} e^{it} + z \log|h(e^{it})| \, dt + i\alpha \right)
\]
for some real α, h is called an outer function. We call q in N_+ an inner function if
$|q(e^{i\theta})| = 1$ a.e. on ∂U.

Let g be a nonzero function in H^p. Then the following property (\ast) characterizes
that g is an outer function.

(\ast) Whenever kg belongs to H^p for k in L^∞ with $k(e^{i\theta}) \geq 0$ a.e. on U, then k is
a constant function (see [6]).

We can consider a stronger property of g:

$(\ast\ast)$ Whenever kg belongs to H^p for some Lebesgue measurable k with
$k(e^{i\theta}) \geq 0$ a.e. on ∂U, then k is a constant function.

In [6], the function g with property $(\ast\ast)$ is called a p-strong outer function. We
should remark that deLeeuw and Rudin [1] used the phrase “strong outer function”
in a little different context. The p-strong outer functions appear to be important in
many problems, for example, extremal problems, interpolation problems, Toeplitz
operators, and prediction theory. In particular, when $\|g\|_1 = 1$, g is a 1-strong outer function if and only if g is exposed points of the unit ball of H^1 (see [6]).

Suppose $p(z) = \prod_{j=1}^{n} (z + a_j)$. If $p(z)/\|p(z)\|_1$ is an exposed point, then $|a_j| \geq 1$ $(j = 1, \ldots, n)$ and $a_i \neq a_j$ $(i \neq j)$ (cf. [1]). It is known that the converse is valid [7], which is also derived from [4 and 5] as follows. If $n = 1$, the result follows from Proposition 5 of [4]. Suppose $n > 1$ and $\prod_{j=1}^{n-1} (z + a_j)/\|\prod_{j=1}^{n-1} (z + a_j)\|_1$ is exposed but $p(z)/\|p(z)\|_1$ is not. Here we may assume without loss of generality that $|a_j| = 1$ for some j, say $j = n$. By Proposition 1 of [4], we have an element k in $S_{|p|/p}$ which can be represented by $(e^{i\theta} + a_n)(1 + \bar{a}_n e^{i\theta})h(e^{i\theta})$ for some nonconstant h in H^1 by Lemma 3 of [5]. Thus we have

$$k/p = (1 + \bar{a}_n z)h/\prod_{j=1}^{n-1} (z + a_j) > 0 \text{ a.e. on } \partial U,$$

which contradicts the assumption that $\prod_{j=1}^{n-1} (z + a_j)/\|\prod_{j=1}^{n-1} (z + a_j)\|_1$ is exposed.

Now we wish to prove that $p(f)/\|p(f)\|_1$ is an exposed point for the above $p(z)$ and any nonconstant f in H^∞ with $\|f\|_\infty \leq 1$. For $n = 1$, this is known [4, Proposition 5]. But we need a new idea to prove it in general.

Lemma. If $P(z) = \prod_{j=1}^{n} (z + a_j)$, $\|a_j| = 1 \ (j = 1, \ldots, n)$, and $a_i \neq a_j$ $(i \neq j)$, then there exists a k in A such that k^{-1} is in A and $\text{Re}[k(e^{i\theta})p(e^{i\theta})] \geq 0$ a.e. on ∂U.

Proof. By the hypothesis on a_j, we can write $a_j = e^{i(\alpha_j - \pi)}$ $(j = 1, \ldots, n)$, where $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n \leq 2\pi$. Let

$$s = \left[\sum_{j=1}^{n} (\alpha_j - \pi)\right] / 4\pi$$
and

$$\alpha = 2\pi \left(\sum_{j=1}^{n} (\alpha_j - \pi) / 4\pi - s\right),$$

where $[-]$ is the greatest integer function, and we have $0 \leq \alpha < 2\pi$. Then there exists a real valued function $\nu(\theta)$ on $[0, 2\pi]$ such that

(i) $\nu(\theta) = e^{i\nu(\theta)}$ $(0 < \theta < 2\pi, \theta \neq \alpha_j, j = 1, \ldots, n)$,

(ii) $\nu(0) = \alpha$, $\nu(2\pi) - \nu(0) = 2n\pi$,

(iii) $\nu(\theta)$ is right continuous, and left continuous except for jump discontinuities of π at α_j ($j = 1, \ldots, n$).

Indeed, $\nu(\theta)$ has the form

$$\nu(\theta) = \begin{cases} \alpha + j\pi + n\theta/2 & \text{if } \alpha_j \leq \theta < \alpha_{j+1}, \ j = 0, 1, \ldots, n, \\ \alpha + 2n\pi & \text{if } \theta = 2\pi, \end{cases}$$

where $\alpha_0 = 0$ and $\alpha_{n+1} = 2\pi$. Then there exists a continuous function ν_0 on $[0, 2\pi]$ such that

(i) $\nu_0(\alpha_j) = -\alpha + j\pi - (n/2)a_j$ $(j = 1, \ldots, n)$,

(ii) $\nu_0(0) = \nu_0(2\pi) = -\alpha$,

(iii) ν_0 is a straight line in each interval $[\alpha_j, \alpha_{j+1}]$ $(j = 0, \ldots, n)$.

Now we can find the desired function k of the lemma. Let ν_0^* be the harmonic conjugate of ν_0, then $\nu_0 + iv_0^*$ belongs to A because ν_0 is in a Lipschitz class (cf. [3, p. 140]). Let $k = -i \exp(-\nu_0^* + iv_0)$; then both k and k^{-1} are in A and

$$k(e^{i\theta})p(e^{i\theta}) / |k(e^{i\theta})p(e^{i\theta})| = e^{i(\nu(\theta) + \nu_0(\theta) - \pi/2)}$$

with $-\pi/2 \leq \nu(\theta) + \nu_0(\theta) - \pi/2 \leq -\pi/2$ $(0 \leq \theta \leq 2\pi)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem. If \(p(z) = \prod_{j=1}^n (z + a_j) \), \(|a_j| \geq 1 \) (\(j = 1, \ldots, n \)), and \(a_i \neq a_j \) (\(i \neq j \)), then for any nonconstant function \(f \) in \(H^\infty \) with \(\|f\|_\infty \leq 1 \), \(p(f)/\|p(f)\|_1 \) is an exposed point of the unit ball of \(H^1 \).

Proof. Let \(\Omega_1 = \{ j \mid 1 \leq j \leq n, |a_j| = 1 \} \), \(\Omega_2 = \{ j \mid 1 \leq j \leq n, |a_j| > 1 \} \), and put \(p_i(z) = \prod_{j \in \Omega_i} (z + a_j) \), where \(p_i(z) = 1 \) if \(\Omega_i \) is empty (\(i = 1, 2 \)). By the lemma there exists a \(k \) in \(A \) such that \(k^{-1} \) is in \(A \) and \(\text{Re}[k(e^{i\theta})p_1(e^{i\theta})] \geq 0 \) on \(\partial U \). So, \(\text{Re}[k(e^{i\theta})p_1(e^{i\theta})] > 0 \) on \(U \) by the Poisson integral representation of \(h(z)p_1(z) \). For any nonconstant \(f \) in \(H^\infty \) with \(\|f\|_\infty \leq 1 \), \(k(f(z)) \) is bounded analytic in \(U \), and

\[
\text{Re}[k(f(z))p_2(f(z))^{-1}p(f(z))] = \text{Re}[k(f(z))p_1(f(z))] > 0
\]
on \(U \), and hence \(\geq 0 \) a.e. on \(\partial U \). Then, by Proposition 5(2) of [3], we have that \(p(f)/\|p(f)\|_1 \) an exposed point of \(H^1 \).

References

Department of Mathematics, Faculty of Science (General Education), Hokkaido University, Sapporo 060, Japan