Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal periodic orbits and topological entropy of interval maps


Author: Bau-Sen Du
Journal: Proc. Amer. Math. Soc. 100 (1987), 482-484
MSC: Primary 58F20; Secondary 26A18, 54C70, 58F08
DOI: https://doi.org/10.1090/S0002-9939-1987-0891150-8
MathSciNet review: 891150
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any two integers $ m \geq 0$ and $ n \geq 1$, we construct continuous functions from $ \left[ {0,1} \right]$ into itself which have exactly one minimal periodic orbit of least period $ {2^m}\left( {2n + 1} \right)$, but with topological entropy equal to $ \infty $.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F20, 26A18, 54C70, 58F08

Retrieve articles in all journals with MSC: 58F20, 26A18, 54C70, 58F08


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0891150-8
Keywords: Least period, periodic points, periodic orbits, minimal periodic orbits, topological entropy
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society