FOR EVERY CONTINUOUS \(f \)

THERE IS AN ABSOLUTELY CONTINUOUS \(g \)

SUCH THAT \([f = g]\) IS NOT BILATERALLY STRONGLY POROUS

Z. BUCZOLICH

ABSTRACT. For any Darboux function \(f : [0,1] \rightarrow \mathbb{R} \) and any \(0 < \delta < 1 \) there is a point \(x \in [0,1 - \delta] \) and a sequence \(x_n \) such that

(a) \(x_n \in [x + \delta^{n+1}, x + \delta^n] \) \((n = 1,2,\ldots)\) and
(b) \(\sum_{n=2}^{\infty} |f(x_n) - f(x_{n-1})| < +\infty. \)

Consequently, for every \(f \in C[0,1] \) there is an absolutely continuous function \(g \) such that \(\{x : f(x) = g(x)\} \) is not bilaterally strongly porous.

In [1] P. Humke and M. Laczkovich proved that every continuous function agrees with an absolutely continuous function on a set which is not bilaterally strongly \(x^{1+\delta} \) porous (Theorem 3).

In fact, they proved that for any \(f \in C[0,1] \) there is a point \(x \in [0,1] \) and a sequence \(x_n \rightarrow x \) such that

\[x_n \in [x + ((n + 1)!)^{-\delta}, x + (n!)^{-1-\delta}] \]

and

\[|f(x_n) - f(x)| < n^{-1-\delta/2} \]

for \(n > n_0 \) and \(\delta > 0 \).

Let \(g \in C[0,1] \) be linear on the intervals \([0,x], [x_{n+1}, x_n] \) \((n = 1,2,\ldots), [x_1, 1] \), and agree with \(f \) at the points \(x_n \). Since

\[\sum_{n=n_0}^{\infty} |f(x_n) - f(x_{n-1})| < +\infty, \]

g is absolutely continuous and \(f = g \) on a set which is not bilaterally strongly \(x^{1+\delta} \)-porous. We prove the following

THEOREM. For any Darboux function \(f : [0,1] \rightarrow \mathbb{R} \) and any \(0 < \delta < 1 \) there is a point \(x \in [0,1 - \delta] \) and a sequence \(x_n \) such that

(a) \(x_n \in [x + \delta^{n+1}, x + \delta^n] \) \((n = 1,2,\ldots)\) and
(b) \(\sum_{n=2}^{\infty} |f(x_n) - f(x_{n-1})| < +\infty. \)

Defining the function \(g \) as above, we obtain the following

COROLLARY. For every \(f \in C[0,1] \) there is an absolutely continuous function \(g \) such that \(\{x : f(x) = g(x)\} \) is not bilaterally strongly porous.

DEFINITION 1. Let \(R \) be a rectangle \(R = [\alpha, \beta] \times [m, M] \). We say that \(f \) is in \(R \) if \(\text{graf } f|_{[\alpha, \beta]} \subset R \).

Received by the editors January 24, 1986.

©1987 American Mathematical Society
0002-9939/87 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
From now on we suppose that we are given a positive number $\delta < 1$ and a Darboux function $f: [0, 1] \to \mathbb{R}$.

Definition 2. Suppose that we have a rectangle $R = [\alpha, \beta] \times [m, M]$ and a number $k \in \mathbb{N}$ such that $\delta^k < \beta - \alpha$ and f is in R. We say that f is k-first class in R if whenever $I \subseteq [\alpha + \delta^{k+1}, \beta]$ with $|I| = \delta^k (1 - \delta)$, then there exists $x \in I$ such that $f(x) = (m + M)/2$. Thus we can define a function $y_k : [\alpha, \beta - \delta^k] \to \mathbb{R}$ such that for any $x \in [\alpha, \beta - \delta^k]$ we have $f(y_k(x)) = (m + M)/2$ and $y_k(x) \in [x + \delta^{k+1}, x + \delta^k]$. We say that f is k-second class in R if f is not k-first class in R; that is if there is an $x' \in [\alpha, \beta - \delta^k]$ such that $f(x) \neq (m + M)/2$ for $x \in [x' + \delta^{k+1}, x' + \delta^k]$.

We choose a number $p \in \mathbb{N}$ such that $(1 - \delta^p) - \sum_{n=p}^{\infty} \delta^n \geq \delta$.

Lemma. Suppose that $k \in \mathbb{N} \cup \{0\}$, $m < M \in \mathbb{R}$, $\alpha + \delta^{k+1} \in [0, 1 - \delta]$, $\alpha > 0$. For $n \geq k + p$ we define the sequence of rectangles R_n by

$$R_n := \left[\alpha + \delta^{k+1}, \alpha + \delta^k (1 - \delta^p) - \sum_{l=k+p}^{n-1} \delta^l\right] \times [m, M].$$

(When $n = k + p$ we define the result of the empty summation to be 0.) We also suppose that f is n-first class in R_n for $n = k + p, k + p + 1, \ldots$. Then there are $x \in \left[\alpha + \delta^{k+1}, \alpha + \delta^k \cdot \left((1 - \delta^p) - \frac{\delta^p}{1 - \delta}\right)\right] \cap [0, 1 - \delta]$ and a sequence x_j such that

(1) $x_j \in [x + \delta^j + 1, x + \delta^j]$ \quad ($j = 1, 2, \ldots$)

and

(2) $\sum_{j=2}^{\infty} |f(x_j) - f(x_{j-1})| < +\infty$.

Proof. By the choice of p,

$$I := \left[\alpha + \delta^{k+1}, \alpha + \delta^k \left((1 - \delta^p) - \frac{\delta^p}{1 - \delta}\right)\right] \neq \emptyset$$

and we let $x \in I \cap [0, 1]$. Since f is n-first class in R_n we have a function $y_n : [\alpha + \delta^{k+1}, \alpha + \delta^k (1 - \delta^p) - \sum_{l=k+p}^{n} \delta^l] \to \mathbb{R}$ and x obviously belongs to the domain of y_n. We define the desired sequence by $x_j := x + \delta^j + 1$ for $0 < j < k + p$ and $x_j := y_j(x)$ for $j \geq k + p$, thus (1) is fulfilled. Since $f(y_j(x)) = (m + M)/2$ ($j \geq k + p$) obviously (2) is also fulfilled.

Proof of the Theorem. First we suppose that in each interval $[\alpha, \beta] \subset [0, 1 - \delta]$, $\sup\{f(x); x \in [\alpha, \beta]\} = +\infty$. Then letting $H_m := \{x \in [0, 1]; f(x) \leq m\}$ we have $\bigcup_{m=1}^{\infty} H_m = [0, 1]$ and hence, by Baire’s theorem, there is an m_0 and a subinterval $[\alpha_0, \beta_0]$ such that H_{m_0} is dense in $[\alpha_0, \beta_0]$. Thus f, as a Darboux function, takes on the value $y = m_0 + 1$ in any subinterval of $[\alpha_0, \beta_0]$. Hence the statement of the theorem is obvious.

We can treat similarly the case when $\inf\{f(x); x \in [\alpha, \beta]\} = -\infty$ in any subinterval $[\alpha, \beta] \subset [0, 1 - \delta]$.
Therefore we can suppose that there is a rectangle $R_{-1} = [\alpha_0, \beta_0] \times [m_0, M_0]$ such that f is in R_{-1} and $\beta_0 < 1 - \delta$. Thus we can choose a number j_0 such that $\alpha_0 + \delta^{j_0} \leq \beta_0$. We put

$$R_{j_0} := [\alpha_0 + \delta^{j_0+1}, \alpha_0 + \delta^{j_0}(1 - \delta^p)] \times [m_0, M_0]$$

and

$$\overline{R}_{j_0} := [\alpha_0 + \delta^{j_0+1}, \alpha_0 + \delta^{j_0}] \times [m_0, M_0].$$

Obviously f is in R_{j_0} and \overline{R}_{j_0}. By our lemma we can suppose that the conditions of the lemma are not fulfilled by any $k, \alpha \in [0, 1 - \delta], \beta, m, M$. It follows that there is an index $j_1 \geq j_0 + p$ such that

$$\text{in } R_{j_1} := \left[\alpha_0 + \delta^{j_0+1}, \alpha_0 + \delta^{j_0} \cdot (1 - \delta^p) - \sum_{l=j_0+p}^{j_1-1} \delta^l \right] \times [m_0, M_0]$$

f is j_1-second class

and

for $j_0 + p \leq n < j_1$

$$R_n := \left[\alpha_0 + \delta^{j_0+1}, \alpha_0 + \delta^{j_0} \cdot (1 - \delta^p) - \sum_{l=j_0+p}^{n-1} \delta^l \right] \times [m_0, M_0]$$

f is n-first class.

From (3) it follows that there is

$$x' \in \left[\alpha_0 + \delta^{j_0+1}, \alpha_0 + \delta^{j_0} \cdot (1 - \delta^p) - \sum_{l=j_0+p}^{j_1-1} \delta^l \right]$$

such that $f(x) \neq (m_0 + M_0)/2$ for $x \in [x' + \delta^{j_1+1}, x' + \delta^{j_1}]$. We put $a_1 := x'$.

From the Darboux property of f it follows that we can choose m_1 and M_1 such that $M_1 - m_1 = \frac{1}{2}(M_0 - m_0)$ and f is in $\overline{R}_{j_1} = [a_1 + \delta^{j_1+1}, a_1 + \delta^{j_1}] \times [m_1, M_1]$ and $\overline{R}_{j_1} \subset \overline{R}_{j_0}$. We put

$$R_{j_1} := [\alpha_1 + \delta^{j_1+1}, \alpha_1 + \delta^{j_1} \cdot (1 - \delta^p)] \times [m_1, M_1] \quad (\subset \overline{R}_{j_1} \subset \overline{R}_{j_0}).$$

Obviously

$$[\alpha_1 + \delta^{j_1+1}, \alpha_1 + \delta^{j_1}] \subset \left[\alpha_0 + \delta^{j_0+1}, \alpha_0 + \delta^{j_0} \cdot (1 - \delta^p) - \sum_{l=j_0+p}^{j_1-1} \delta^l \right];$$

hence, by (4), x belongs to the domain of y_n ($j_0 + p \leq n < j_1$) for all $x \in [\alpha_1 + \delta^{j_1+1}, \alpha_1 + \delta^{j_1}]$.

Suppose we have defined R_{j_n} for $n \leq i$. Then we repeat our process in R_{j_i} and define the index j_{i+1}, the numbers m_{i+1}, M_{i+1}, the rectangles $R_{j_{i+1}}, \overline{R}_{j_{i+1}}$, and the functions y_n ($j_i + p \leq n < j_{i+1}$). Thus, by induction we can define an infinite sequence of rectangles $R_{j_i}, \overline{R}_{j_i}$ ($i = 0, 1, \ldots$) of numbers m_i, M_i ($i = 0, 1, \ldots$), and we also define the functions y_n for $j_{i+1} > n \geq j_i + p, i \in \mathbb{N}$. Since $R_{j_{i+1}} \subset R_{j_i}$ ($i = 0, 1, \ldots$) and R_{j_i} is a closed set, $\bigcap_{i=1}^{\infty} R_{j_i} \neq \emptyset$; let $(x, y) \in \bigcap_{i=1}^{\infty} R_{j_i}$. For
0 < n < j_0 + p we put \(x_n := x + \delta^{n+1} \). If there is an \(i \in \mathbb{N} \) such that \(j_i + p > n \geq j_i \), then we also put \(x_n := x + \delta^{n+1} \), otherwise we put \(x_n = y_n(x) \). Thus (a) of the theorem is obviously fulfilled. We also have that

\[
\sum_{n=jo+1}^{\infty} |f(x_n) - f(x_{n-1})| = \sum_{i=0}^{\infty} \sum_{n=j_i+p+1}^{j_i+1} |f(x_n) - f(x_{n-1})| + \sum_{i=1}^{\infty} \sum_{n=j_i}^{j_i+p} |f(x_n) - f(x_{n-1})| + \sum_{n=jo+1}^{j_0+p} |f(x_n) - f(x_{n-1})| =: A_1 + A_2 + A_3.
\]

Since \(f(x_n) = (M_i - m_i)/2 \) for \(j_i + p \leq n \leq j_{i+1} - 1 \), we have \(A_1 = 0 \). It is easy to check that \((x_l; f(x_l)) \in \overline{R}_{j_l-1} \) for \(l \geq j_i - 1 \). Thus \(A_2 \leq \sum_{i=1}^{\infty} (p+1)(M_{i-1} - m_{i-1}) \). We also have that

\[M_{i+1} - m_{i+1} = (M_i - m_i)/2 \quad (i = 0, 1, \ldots). \]

Thus \(A_2 < \infty \) and it completes the proof.

REFERENCES