ON THE PURELY INSEPARABLE CLOSURE OF RINGS

SHIZUKA SATO

ABSTRACT. Let $K \subseteq R$ be commutative rings with identity 1. Let $D = \{D_i\}$ be a higher derivation of R. We shall prove in this paper that if K is invariant with respect to D, the purely inseparable closure K_R of K in R is invariant with respect to D and the formal power series ring $K_R[[t]]$ is purely inseparably closed in $R[[t]]$.

1. Introduction. Let $K \subseteq R$ be commutative rings with identity 1. Let $D = \{D_i\}$ be a higher derivation of R. We shall write $D(K) \subseteq K$ if $D_i(K) \subseteq K$ for all i. We shall call R purely inseparable over K if for every element x of R there is an integer n such that $(x \otimes 1 - 1 \otimes x)^n = 0$ in $R \otimes_K R$ (cf. [1]). It is immediately proved that there exists the maximum purely inseparable subalgebra over K contained in R. We shall call this subalgebra the purely inseparable closure of K in R and we shall write K_R. We shall prove that $D(K) \subseteq K$ implies $D(K_R) \subseteq K_R$ and the formal power series ring $K_R[[t]]$ is purely inseparably closed in $R[[t]]$.

2. The purely inseparable closure. Let $K \subseteq R$ be commutative rings with identity 1. Let $\{K_\lambda\}_{\lambda \in \Lambda}$ be the set of purely inseparable subalgebras over K contained in R and let K_R be the subalgebra of R generated by $\{K_\lambda\}_{\lambda \in \Lambda}$ over K. Then it is evident that K_R is the maximum purely inseparable subalgebra over K in R. We shall call K_R the purely inseparable closure of K in R. If $K_R = K$, we shall call K purely inseparably closed in R.

EXAMPLE. Let K be a field of characteristic $p > 0$ and let X, Y, and Z be three indeterminates over K. Let $R = K[X,Y,Z]/(Y^p - X) = K[x,y,z]$. Then R is a domain and $K[x,y]$ is purely inseparable over $K[x]$. Assume S is a purely inseparable subalgebra over $K[x]$ containing $K[x,y]$. An element $f \in S$ can be written in the form

$$f = \sum_{i=0}^{n} g_i(x,y)z^i, \quad g_i(x,y) \in K[x,y].$$

Then we have $f^{p^m} \otimes 1 - 1 \otimes f^{p^m} = 0$ for some integer m in $S \otimes_K S$. Since $g_i(x,y)^{p^m} \in K[z]$, we have

$$\sum_{i=1}^{n} g_i(x,y)^{p^m} (z^{ip^m} \otimes 1 - 1 \otimes z^{ip^m}) = 0$$

and hence

$$g_i(x,y)^{p^m} = 0 \quad \text{for all } i \geq 1.$$
Since R is a domain D, we have $g_i(x, y) = 0$ for all i and $f = g_0(x, y)$. Therefore we have $S \subseteq K[x, y]$ and it follows that the purely inseparable closure $\overline{K[x]}_R$ of $K[x]$ in R is $K[x, y]$.

A higher derivation D of R is an infinite sequence $D = \{D_0, D_1, D_2, \ldots\}$ of mappings D_i of R into R such that

$$
D_i(x + y) = D_i(x) + D_i(y),
$$

$$
D_i(xy) = \sum_{j=0}^{i} D_j(x)D_{i-j}(y) \quad \text{for } x, y \in R,
$$

$$
D_0(1) = 1.
$$

Let $D = \{D_i\}$ be a higher derivation of R and let $e^{tD} = D_0 + tD_1 + t^2D_2 + \cdots$ (t is a variable). Then e^{tD} is a homomorphism of R into $R[[t]]$.

Lemma 1. Let $K \subseteq S \subseteq R$ be commutative rings with identity 1. Let $D = \{D_i\}$ be a higher derivation of R. Assume S is a subalgebra of R purely inseparable over K. If $D(K) \subseteq K$, then $e^{tD}(S)$ is a purely inseparable subalgebra of $R[[t]]$ over $e^{tD}(K)$.

Proof. Let L be a reduced $e^{tD}(K)$-algebra and let ψ, ϕ be $e^{tD}(K)$-algebra homomorphisms of $e^{tD}(S)$ into L such that $\psi i = \phi i$ where i is the canonical injection of $e^{tD}(K)$ into $e^{tD}(S)$. We shall consider the commutative diagram:

$$
\begin{array}{c}
R \\
\uparrow \\
S \\
\uparrow i \\
K \\
\uparrow i \\
\end{array} \longrightarrow \begin{array}{c}
R[[t]] \\
\uparrow \\
e^{tD} \\
\uparrow i \\
e^{tD}(K) \\
\uparrow i \\
0
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array}
\begin{array}{c}
L \\
\phi \\
i \\
i \\
0
\end{array}
\begin{array}{c}
\psi \\
\phi \\
i \\
i \\
0
\end{array}
$$

Then, since L is regarded as a K-algebra by e^{tD}, we have $\psi ie^{tD} = \phi ie^{tD}$. Hence we have $\psi ie^{tD} = \psi e^{tD}i$ and $\phi ie^{tD} = \phi e^{tD}i$. Since S is purely inseparable over K, it holds that $\psi e^{tD} = \phi e^{tD}$ and hence $\psi = \phi$. Therefore $e^{tD}(S)$ is purely inseparable over $e^{tD}(K)$.

Lemma 2. Using the same terminology as in Lemma 1, let T be an intermediate ring as $K \subseteq T \subseteq R$. Then if S is a subalgebra of R purely inseparable over K then ST is purely inseparable over T.

Proof. Let U be a reduced T-algebra and let ψ, ϕ be T-algebra homomorphisms of ST into U satisfying $\psi i = \phi i$. We shall consider the commutative diagram:

$$
\begin{array}{c}
0 \\
\uparrow i \\
S \\
j \uparrow i \\
ST \\
\uparrow i \\
U \\
\end{array} \longrightarrow \begin{array}{c}
0 \\
\uparrow i \\
K \\
j \uparrow i \\
T
\end{array}
\begin{array}{c}
\longrightarrow \\
\psi \\
\phi \\
i \\
i
\end{array}
\begin{array}{c}
0 \\
\uparrow i \\
0
\end{array}
$$

$(i, j$ are the canonical injections). From $\psi i = \phi i$ we have $\psi ji = \phi ji$ and hence $\psi ji = \phi ji$. Since S is purely inseparable over K, it holds that $\psi = \phi$ and therefore ST is purely inseparable over T.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
LEMMA 3. Let $K \subseteq R$ be commutative rings with identity 1 and let f be a mapping of the product space $R[[t]] \times R[[t]]$ into $(R \otimes_K R)[[t]]$ (t is a variable) such that
\[
f\left(\sum a_i t^i, \sum b_i t^i\right) = \sum_{k=0}^\infty \sum_{i+j=k} (a_i \otimes b_j) t^k, \quad a_i, b_j \in R.
\]
Then f is bilinear and hence we have a linear mapping \bar{f} of $R[[t]] \otimes_K R[[t]]$ into $(R \otimes_K R)[[t]]$. By a simple calculation, this mapping is a ring homomorphism.

THEOREM 1. Let $K \subseteq R$ be commutative rings with identity 1 and let $D = \{D_i\}$ be a higher derivation of R. If $D(K) \subseteq K$, we have $D(KR) \subseteq KR$.

PROOF. Let S be the subalgebra of R generated by $\{D_i(a)\}_{a \in KR,t}$ over KR. By Lemmas 1 and 2, $e^{tD}(KR)K[[t]]$ is purely inseparable over $e^{tD}(K)K[[t]] = K[[t]]$. Therefore, for any element $a \in KR$, there is an integer n such that
\[
ed^{tD}(a) \otimes 1 - 1 \otimes ed^{tD}(a)^n = 0
\]
in
\[
e^{tD}(KR)K[[t]] \otimes K[[t]] e^{tD}(KR)K[[t]].
\]
Since $e^{tD}(KR)K[[t]] \subseteq S[[t]]$, we have $e^{tD}(a) \otimes 1 - 1 \otimes e^{tD}(a)^n = 0$ in $S[[t]] \otimes_K S[[t]]$ and hence
\[
ed(e^{tD}(a) \otimes 1 - 1 \otimes e^{tD}(a))^n = 0
\]
in $(S \otimes_K S)[[t]]$ by Lemma 3. By a simple calculation we have
\[
\left[e^{tD}(a) \otimes 1 - 1 \otimes e^{tD}(a) - \sum_{i=0}^{m-1} (D_i(a) \otimes 1 - 1 \otimes D_i(a)) t^i\right]^{n2^n} = 0
\]
in $(S \otimes_K S)[[t]]$ and hence $(D_m(a) \otimes 1 - 1 \otimes D_m(a))^{n2^m} = 0$ in $S \otimes_K S$. Since S is generated by $\{D_i(a)\}_{0 \leq i < \infty, a \in KR}$ over KR, S is purely inseparable over K. Therefore we have $KR = S$ and $D(KR) \subseteq KR$.

THEOREM 2. Let $K \subseteq R$ be commutative rings with identity 1. Then $KR[[t]]$ is purely inseparably closed in $R[[t]]$.

PROOF. Let $D = \{D_k\}$ be a sequence of mappings of $R[[t]]$ into $R[[t]]$ such that $D_k(\sum a_i t^i) = a_k t^k$ for $\sum a_i t^i \in R[[t]], \quad k = 0, 1, 2, 3, \ldots$. Then D is a higher derivation of $R[[t]]$ such that $D(KR[[t]]) \subseteq KR[[t]]$.

Let T be the purely inseparable closure of $KR[[t]]$ in $R[[t]]$ and let $\alpha = \sum a_i t^i \in T$. By Theorem 1 we have $D_k(\alpha) \in T$ and hence $(\alpha \otimes 1 - 1 \otimes \alpha) t^n = 0$ in $T \otimes_K T$ for some integer n. Let S be a subring of R generated by coefficients of elements of T. Then we have $(\alpha \otimes 1 - 1 \otimes \alpha)^n (t^n \otimes 1) = 0$ in $S[[t]] \otimes_K S[[t]]$ and hence by Lemma 3 $(\alpha \otimes 1 - 1 \otimes \alpha)^n = 0$ in $S \otimes_K S$. By the definition of S, S is purely inseparable over KR. Since KR is purely inseparably closed in R, we have $KR = S$. Therefore it follows $T = KR[[t]]$ and hence $KR[[t]]$ is purely inseparably closed in $R[[t]]$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
REFERENCES

FACULTY OF ENGINEERING, OITA UNIVERSITY, OITA 870-11, JAPAN