Ergodic group actions with nonunique invariant means

Author:
Ching Chou

Journal:
Proc. Amer. Math. Soc. **100** (1987), 647-650

MSC:
Primary 43A07; Secondary 28D15

DOI:
https://doi.org/10.1090/S0002-9939-1987-0894431-7

MathSciNet review:
894431

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the set of -invariant means on , where is a countable group acting ergodically as measure preserving transformations on a nonatomic probability space . We show that if there exists , then contains an isometric copy of , where is considered as a subset of . This provides an answer to a question raised by J. Rosenblatt in 1981.

**[1]**C. Chou,*On topologically invariant means on a locally compact group*, Trans. Amer. Math. Soc.**151**(1970), 443-456. MR**0269780 (42:4675)****[2]**-,*Topological invariant means on the von Neumann algebra*, Trans. Amer. Math. Soc.**273**(1982), 207-229. MR**664039 (83k:22016)****[3]**A. del Junco and J. Rosenblatt,*Counterexamples in ergodic theory and number theory*, Math. Ann.**245**(1979), 185-197. MR**553340 (81d:10042)****[4]**V. G. Drinfel'd,*Finitely additive measures on**and*,*invariant with respect to rotations*, Functional Anal. Appl.**18**(1985), 245-246. MR**757256 (86a:28021)****[5]**E. E. Granirer,*Geometric and topological properties of certain**compact convex subsets of double duals of Banach spaces, which arise from the study of invariant means*, Illinois J. Math. (to appear). MR**822389 (87f:43001)****[6]**V. Losert and H. Rindler,*Almost invariant sets*, Bull. London Math. Soc.**13**(1981), 145-148. MR**608100 (82i:43001)****[7]**G. A. Margulis,*Some remarks on invariant means*, Monatsh. Math.**90**(1980), 233-235. MR**596890 (82b:28034)****[8]**-,*Finitely-additive invariant measures on Euclidean spaces*, Ergodic Theory Dynamical Systems**2**(1982), 383-396. MR**721730 (85g:28004)****[9]**J. Rosenblatt,*Uniqueness of invariant means for measure preserving transformations*, Trans. Amer. Math. Soc.**265**(1981), 623-636. MR**610970 (83a:28026)****[10]**K. Schmidt,*Asymptotically invariant sequences and an action of**on the**-sphere*, Israel J. Math.**37**(1980), 193-208. MR**599454 (82e:28023a)****[11]**-,*Amenability, Kazhdan's property*,*strong ergodicity and invariant means for ergodic actions*, Ergodic Theory Dynamical Systems**1**(1981), 223-236. MR**661821 (83m:43001)****[12]**D. Sullivan,*For**there is only one finitely-additive rotationally invariant measure on the**-sphere defined on all Lebesgue measurable sets*, Bull. Amer. Math. Soc. (N.S.)**1**(1981), 121-123. MR**590825 (82b:28035)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
43A07,
28D15

Retrieve articles in all journals with MSC: 43A07, 28D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0894431-7

Keywords:
Invariant means,
ergodic group actions,
asymptotically invariant sequences

Article copyright:
© Copyright 1987
American Mathematical Society