ON THE DILATATION ESTIMATES FOR BEURLING-AHLFORS QUASICONFORMAL EXTENSION

DELIN TAN

ABSTRACT. Let $\mu(x)$ be a ρ-quasisymmetric function. Then the dilatation $K(z)$ of Beurling-Ahlfors extension with $r = 1$ satisfies the inequalities $K \leq 2\rho - 7(\rho - 1)/(\rho + 1)$ and $K < 2\rho - 2 + O(1/\rho)$ for sufficiently large ρ.

1. Introduction. Let $\mu(x)$ be ρ-quasisymmetric, $1 \leq \rho < \infty$, i.e. $\mu(x)$ is a continuous increasing function mapping the real line onto itself and satisfying

\begin{equation}
\frac{1}{\rho} \leq \frac{\mu(x + t) - \mu(x)}{\mu(x) - \mu(x - t)} \leq \rho
\end{equation}

for all x and $t \neq 0$.

Beurling and Ahlfors [1] using the formulas

\begin{equation}
\begin{align*}
 u(x, y) &= \frac{1}{2} \int_0^1 [\mu(x + ty) - \mu(x - ty)] dt, \\
 v(x, y) &= \frac{r}{2} \int_0^1 [\mu(x + ty) - \mu(x - ty)] dt \quad (r > 0)
\end{align*}
\end{equation}

constructed the function $w(z) = u(x, y) + iv(x, y)$, which is a q.c. mapping from the upper half-plane onto itself having $\mu(x)$ as its boundary value. It is of interest to estimate the dilatation $K(z)$ of $w(z)$.

Beurling and Ahlfors [1] first proved for some r

\begin{equation}
K \leq \rho^2.
\end{equation}

Reed [2] improved the inequality (3) as follows:

\begin{equation}
K < 8\rho.
\end{equation}

Li Zhong [3] then obtained

\begin{equation}
K < 4 \cdot 2\rho.
\end{equation}

Ahlfors [4] also proved that the Beurling-Ahlfors extension function with $r = 1$ is quasi-isometric, i.e. there exists a constant A such that

\begin{equation}
\frac{1}{A} d(z_1, z_2) \leq d(w(z_1), w(z_2)) \leq A d(z_1, z_2)
\end{equation}

for any z_1, z_2 in the upper half-plane, where $d(\cdot, \cdot)$ denotes the non-Euclidean distance.

Ahlfors obtained

\begin{equation}
A < 4\rho^2(\rho + 1).
\end{equation}
Chen Ji-xiu refined Reed’s method to obtain

(8) \[K < 2 \cdot 58 \rho \]

and

(9) \[A < 3 \rho. \]

In this paper we have refined the Beurling-Ahlfors technique and obtained the following theorem.

THEOREM 1. Let \(\mu(x) \) be a \(\rho \)-quasisymmetric function. Then the dilatation \(K(z) \) of the Beurling-Ahlfors extension with \(r = 1 \) satisfies the inequalities

(10) \[K \leq 2 \rho - \frac{7(\rho - 1)}{6(\rho + 1)} \]

and

(11) \[K < 2 \rho - 2 + O(1/\rho) \]

for sufficiently large \(\rho \).

THEOREM 2. Let \(\mu(x) \) be a \(\rho \)-quasisymmetric function and let \(w(z) \) be the Beurling-Ahlfors extension of \(\mu(x) \) for \(r = 1 \). Then

(12) \[\frac{1}{2\rho} d(z_1, z_2) \leq d(w(z_1), w(z_2)) \leq 2\rho d(z_1, z_2) \]

for any \(z_1, z_2 \) in the upper half-plane.

Remark 1. When \(\rho = 1 \) and \(\mu(0) = 0 \), we easily see that \(w(z) = c(x + yi/2) \) (\(c > 0 \)). It is evident that \(K(z) = 2 \) and

\[
\lim_{\text{Im} z_1 = \text{Im} z_2 > 0} \frac{d(w(z_1), w(z_2))}{d(z_1, z_2)} = 2.
\]

Therefore the coefficient 2 of \(\rho \) either in Theorem 1 or 2 cannot be replaced by any smaller number.

Remark 2. This work was done during the summer of 1983. It is independent of Lehtinen’s paper. Lehtinen [5] obtained

(13) \[K \leq 2 \rho. \]

2. **Lemma.** Let \(\mu(x) \) be a \(\rho \)-quasisymmetric function normalized by \(\mu(0) = 0 \) and \(\mu(1) = 1 \). Then

(14) \[(1 + 2\rho) \xi + \beta \eta \geq 1 + \beta, \]

(15) \[\beta(1 + 2\rho) \eta + \xi \geq 1 + \beta, \]

where \(\beta = -\mu(-1), \xi = 1 - \int_0^1 \mu(t) \, dt \), and \(\eta = 1 + \beta^{-1} \int_{-1}^0 \mu(t) \, dt \).

Proof. Taking \(x = t > 0 \) in (1) we have \((1 + \rho)\mu(x) \geq \mu(2x) \). Thus

\[
(1 + \rho) \int_0^1 \mu(x) \, dx \geq \int_0^1 \mu(2x) \, dx = \frac{1}{2} \int_0^1 \mu(x) \, dx + \frac{1}{2} \int_0^2 \mu(x) \, dx.
\]
Therefore

\[(1 + 2\rho) \int_0^1 \mu(x) \, dx \geq \int_1^2 \mu(x) \, dx.\]

Substituting \(1 - \mu(1 - x)\) for \(\mu(x)\), we get

\[(1 + 2\rho) \left[1 - \int_0^1 \mu(x) \, dx \right] \geq 1 - \int_{-1}^0 \mu(x) \, dx.\]

This yields (14). Similarly, substituting \(1 + \mu(x - 1)/\beta\) for \(\mu(x)\) yields (15).

3. **Proof of Theorem 1.** Because of linear invariance we only need to estimate \(K(z)\) for \(x = 0, y = 1, \) and \(\mu(x)\) normalized by \(\mu(0) = 0, \mu(1) = 1\). Thus the dilatation \(K = K(t)\) with \(r = 1\) satisfies \([1]\) the equation

\[(17) \quad K + \frac{1}{K} = \frac{1}{\xi + \eta} \left[\frac{1}{\beta} (1 + \xi^2) + \beta (1 + \eta^2) \right] \equiv F(\xi, \eta, \beta),\]

where \(\beta \leq \rho, 1/(1 + \rho) \leq \xi, \eta \leq \rho/(1 + \rho)\). Furthermore, we can suppose \(\beta \geq 1\), otherwise consider \(-w(-z)/\beta\).

Let \(\mathcal{C}\) be a closed domain bounded by a polygon \(ABCD\). The side \(AB\) lies on the line of \((1 + 2\rho)\xi + \beta \eta = 1 + \beta\); the other sides \(BC, CD, DE,\) and \(AE\) lie on the lines of \(\xi = 1/(1 + \rho), \eta = \rho/(1 + \rho), \xi = \rho/(1 + \rho),\) and \(\eta = 1/(1 + \rho)\), respectively. It is sufficient to look at the maximum of \(F(\xi, \eta, \beta)\) in \(\mathcal{C}\).

By calculating we have

\[
\frac{\partial F}{\partial \eta} = \frac{\beta(\xi + \eta)^2 - (\beta + 1/\beta)(1 + \xi^2)}{(\xi + \eta)^2}, \quad \frac{\partial^2 F}{\partial \eta^2} = \frac{2(\beta + 1/\beta)(1 + \xi^2)}{(\xi + \eta)^3}.
\]

Since \(\partial^2 F/\partial \eta^2 > 0\), max of \(F\) in \(\mathcal{C}\) is in \(CD \cup AE \cup AB\). Since \(\partial^2 F/\partial \xi^2 > 0\), the max is in \(DE \cup BC \cup AB\), so the max is in \(AB \cup \{C, D, E\}\). Since \(\partial F/\partial \eta < 0\) in \(BC\) and \(\partial F/\partial \xi < 0\) in \(AE\), the max is in \(AB \cup \{D\}\).

When \((\xi, \eta) \in AB\), then \(\beta \eta = 1 + \beta - (1 + 2\rho)\xi\) and

\[(18) \quad F(\xi, \eta, \beta) = \frac{2(1 + \beta + \beta^2 - (1 + \beta)(1 + 2\rho)\xi + (1 + 2\rho + 2\rho^2)\xi^2}{1 + \beta - (1 + 2\rho - \beta)\xi} \equiv 2W(\xi, \beta).\]
But $W(\xi, \beta)$ is a convex function of either β or ξ, therefore the max of $W(\xi, \beta)$ must occur when $\xi = 1/(1 + \rho)$, $\beta = \rho$, or

$$\xi = \frac{1 + \rho + \rho \beta}{(1 + \rho)(1 + 2\rho)}, \quad 1 \leq \beta \leq \rho.$$

Hence we only need to consider the following cases:

Case 1: At point D. Then $\xi = \eta = \rho/(1 + \rho)$,

$$F\left(\frac{\rho}{1 + \rho}, \frac{\rho}{1 + \rho}, \beta\right) = \left(\beta + \frac{1}{\beta}\right) \cdot \frac{1 + (\rho/(1 + \rho)^2)}{2\rho/(1 + \rho)} \leq 2\rho + \frac{1}{2\rho} - \frac{(\rho - 1)(2\rho^3 + 4\rho^2 + 2\rho + 1)}{2\rho^2(\rho + 1)}.$$

Case 2: At point B with $\beta = \rho$. Then $\xi = 1/(1 + \rho)$, $\eta = \rho/(1 + \rho)$,

$$F\left(\frac{1}{1 + \rho}, \frac{\rho}{1 + \rho}, \rho\right) = 2\rho - 2 + \frac{2}{\rho} + \frac{2}{1 + \rho} - \frac{2}{(1 + \rho)^2} = 2\rho + \frac{1}{2\rho} - \frac{(\rho - 1)(4\rho^2 + 5\rho + 3)}{2\rho(\rho + 1)}.$$

Case 3: At point A. Then $\xi = (1 + \rho + \beta\rho)/(1 + \rho)(1 + 2\rho)$, $1 \leq \beta \leq \rho$, $\eta = 1/(1 + \rho)$,

$$F\left(\frac{1 + \rho + \beta\rho}{(1 + \rho)(1 + 2\rho)}, \frac{1}{1 + \rho}, \beta\right) \leq (1 + \rho)(1 + 2\rho) \cdot \frac{\beta(1 + \beta) + (1 + \rho) + \beta^2/(1 + \rho) + [(1 + \rho + \beta\rho)^2/(1 + \rho)(1 + 2\rho)]^2/\beta}{2 + 3\rho + \beta\rho}.$$

Denote $\lambda(\rho) = [(1 + \rho + \rho^2)/(1 + \rho)(1 + 2\rho)]^2$. Then

$$(2 + 3\rho + \beta\rho)^2 \frac{\partial Y}{\partial \beta} = (2 + 3\rho) \left[1 + \frac{1}{(1 + \rho)^2}\right] - [1 + \lambda(\rho)] \left[\frac{2\rho}{\beta} + \frac{1}{\beta^2} (2 + 3\rho)\right].$$

When β increases from 1 to ρ, the sign of $\partial Y/\partial \beta$ changes only once. Hence

$$\max_{1 \leq \beta \leq \rho} Y(\beta, \rho) = \max\{Y(1, \rho), Y(\rho, \rho)\},$$

and

$$\begin{align*}
(1 + \rho)(1 + 2\rho)Y(1, \rho) &= \frac{9}{8}\rho + 1 + \frac{1}{1 + \rho} - \frac{9}{16(1 + 2\rho)} - \frac{9}{16(1 + 2\rho)^2} \\
&= 2\rho + \frac{1}{2\rho} - \frac{(\rho - 1)(7\rho^4 + 13\rho^3 + 4\rho^2 - 2\rho - 1)}{2\rho(1 + \rho)(1 + 2\rho)^2},
\end{align*}$$

$$\begin{align*}
(1 + \rho)(1 + 2\rho)Y(\rho, \rho) &= 2\rho - 3 + \frac{1}{\rho} + \frac{15}{2 + \rho} - \frac{3}{1 + 2\rho} - \frac{4}{1 + \rho} + \frac{2}{(1 + \rho)^2} \\
&= 2\rho + \frac{1}{2\rho} - \frac{(\rho - 1)(12\rho^4 + 26\rho^3 + 23\rho^2 + 9\rho + 2)}{2\rho(\rho + 1)^2(\rho + 2)(2\rho + 1)}.
\end{align*}$$
From (19), (20), (22), and (23) we have

\begin{equation}
K + \frac{1}{K} \leq 2\rho + \frac{1}{2\rho} - \frac{7(\rho - 1)}{6(\rho + 1)}
\end{equation}

and

\begin{equation}
K + \frac{1}{K} \leq 2\rho + \frac{1}{2\rho} - 2 + O\left(\frac{1}{\rho}\right)
\end{equation}

for sufficiently large \(\rho \). Inequalities (10) and (11) follow.

4. Proof of Theorem 2. Because the non-Euclidean distance is also a linear invariant we only need to prove

\begin{equation}
\frac{1}{2\rho} \leq \left| \frac{dw(i)}{v(i)dz} \right| \leq 2\rho
\end{equation}

for \(\mu(0) = 0 \) and \(\mu(1) = 1 \). Similarly, we suppose \(\beta \geq 1 \). From (2)

\[v(i) = \frac{1}{2} \int_0^1 [\mu(t) - \mu(-t)] dt = \frac{1}{2}(1 + \beta) - \frac{1}{2}(\xi + \eta). \]

Then

\[\frac{1 + \beta}{2(1 + \rho)} \leq v(i) \leq \frac{\rho(1 + \beta)}{2(1 + \rho)}. \]

From [4]

\[|w_z(i)|^2 = \frac{1}{8}[(1 + \xi^2) + \beta^2(1 + \eta^2) + 2\beta(\xi + \eta)]. \]

Then

\[|w_z(i)|^2 \leq \frac{1}{8} \left[1 + \frac{\rho^2}{(1 + \rho)^2} + \beta \left(1 + \frac{\rho^2}{(1 + \rho)^2} \right) + \frac{4\beta\rho}{1 + \rho} \right] = \left(\frac{1 + \beta}{2(1 + \rho)^2} \right)^2. \]

Hence

\begin{equation}
\left| \frac{w_z(i)}{v(i)} \right|^2 \leq \frac{(1 + \beta)^2(2\rho + 2\rho + 1) - 2\beta}{8(1 + \rho)^2} \cdot \frac{4(1 + \rho)^2}{(1 + \beta)^2}
\end{equation}

\begin{equation}
= \frac{1}{2} \left[2\rho^2 + 2\rho + 1 - \frac{2\beta}{(1 + \beta)^2} \right] \leq \frac{1}{2} \left[2\rho^2 + 2\rho + 1 - \frac{2\rho}{(1 + \rho)^2} \right],
\end{equation}

\begin{equation}
\left| \frac{w_z(i)}{v(i)} \right|^2 \geq \frac{1}{8} \frac{4(1 + \rho)^2}{\rho^2(1 + \beta)^2} \geq \frac{(1 + \rho)^2}{4\rho^2}.
\end{equation}

From Theorem 1

\[K \leq 2\rho - \frac{\rho - 1}{\rho + 1} = \frac{2\rho^2 + \rho + 1}{\rho + 1}. \]

Then

\begin{equation}
\frac{K}{K + 1} \leq \frac{2\rho^2 + \rho + 1}{2\rho^2 + 2\rho + 2}.
\end{equation}
For $dw = w_z \, dz + w_z \, d\bar{z}$, we have

$$|dw| \leq |w_z| \left(1 + \left| \frac{w_z}{w_z} \right| \right) |dz| = \frac{2K}{K + 1} |w_z \, dz|,$$

$$|dw| \geq |w_z| \left(1 - \left| \frac{w_z}{w_z} \right| \right) |dz| = \frac{2}{K + 1} |w_z \, dz|.$$

Then

$$\left| \frac{dw(i)}{V(i) \, dz} \right|^2 \leq \left(\frac{4K^2}{(K + 1)^2} \cdot \left| \frac{w_z(i)}{v(i)} \right| \right)^2$$

$$\leq 2 \left(\frac{2 \rho^2 + \rho + 1}{2 \rho^2 + 2 \rho + 2} \right)^2 \left[2\rho^2 + 2\rho + 1 - \frac{2\rho}{(1 + \rho)^2} \right]$$

$$= 4\rho^2 - \frac{2(\rho - 1)(2\rho^5 + 12\rho^4 + 15\rho^3 + 13\rho^2 + 5\rho + 1)}{2(1 + \rho)^2(1 + \rho + \rho^2)^2}$$

$$\leq 4\rho^2,$$

and that completes the proof.

Finally I want to express my heartfelt thanks to Professor Clifford Earle for his careful reading and many suggestions which made this paper better than the original one.

REFERENCES

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT STONY BROOK, STONY BROOK, NEW YORK 11794