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CONVEXITY AND BANACH ENVELOPE
OF THE WEAK-Lp SPACES

MIGUEL A. ARIÑO

ABSTRACT. The Banach envelope and a representation of the topological dual

of the weak-/p sequence spaces which involves the Lorentz sequence spaces are

computed. The local convexity of weak-Lp spaces is studied also.

vf-Lp spaces are function spaces which are closely related to Lp spaces. They

were introduced in analysis when it was observed that several important operators

such as the Hardy-Littlewood maximal function and the Hilbert transform map Lp

into Lp for p > 1 but they do not map L+ into ¿i and rather satisfy the weak

condition:

p{x:(Tf)(x)>y}<C^.
y

The space weak-Lp (v/-Lp) on a measure space (A, E,p) consists of the measur-

able function / such that

11/11 = sup(app{x: \f(x)\ > a})x'p < oo.
a>0

vf-Lp space and its topological dual—avoiding the case when the measure is

atomic—have been studied by several authors (see Cwikel, Sagher, and Hunt [1,

2, 5, 7]). The Banach envelope and the topological dual of w-Li are unknown

(although the envelope norm is known), but their properties were studied by Cwikel

and Fefferman, and Kupka and Peck (see [3, 4, 9]).

Our purpose in this paper is to study the Banach envelope and the topological

dual of vf-Lp when the measure is atomic. Surprisingly, the topological dual turns

out to be a classical Lorentz sequence space (see [10]); we also show that the Banach

envelope is a known space studied by Garling [6].

For 0 < p < oo the weak-/p sequence space is

vf-l°p = {x = (¡rn)~=1 : limn1/^; = o}

quasi-normed by ||x|| = sup„n1/pz*, where (a;*)^! is a nonincreasing rearrange-

ment of OznD^L,.
If v — (vn)n°=i is a sequence of real numbers in en \ /i with 1 = vi > v2 > ■ ■ ■ >

vn > • • • > 0, d(v, 1) denotes the Lorentz space of all sequences a = (an)^L, of real

numbers such that
oo

IMki = sup YI K(«)K < °°>
*   n=l
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where the supremum is taken in the set of permutations of the integers and it is

attained when (a„rn^)^=1 = (a*)£L, (see [10]).

If A is a quasi-Banach space whose dual A* separates the points of A, then X*

is a Banach space under the norm

||z*||* =   sup  |a;*(x)|.

ll*H<i
The closure of A in (A**, || ||**) is a Banach space called the Banach envelope of

A. A can be identified with its Banach envelope if and only if A is locally convex.

With these preliminaries we can study the w-/p spaces.

1.   LEMMA.   The unit standard vectors en = (<5¿,ra)^, are a basis ofw-lp.

PROOF.  Let x = (2;„)^L, be in w-/p.  We can suppose x is nonincreasing and

xn > 0. We only need observe that

E sup k1/pxn+k — sup(n + k)1/pxn+k,
k k= 1

and thus lim„ ||x — J27=i xiei\\ = 0-    n
Easy computations show

2.   LEMMA.   lp C w-/p C lq for every 0 < p < q < oo, and the inclusion maps

are continuous.

Now we need to point out that every expreme point of the closed unit ball of an

n-dimensional w-/p space is a finite sequence a = (a¿)"=1 such that

«)r=1 = (i,2-^,..., n -i/p\

Letyn = (1,2-^P,...,n-l/.p,0,0,■ ■ •)■ We denote by

n„ = {z = (z*)£=i : (4)kLl = yn,Zk > 0, and zk = 0 if k > n}.

3.   THEOREM.   The topological dual ofw-lp can be identified with the Lorentz

sequence space d(v, 1) with v = (vn)n°=ir vn = n~llp.

PROOF. If O < p < 1, then d(v, 1) is isomorphic to l^ and Lemma 2 ensures

that /oo is the topological dual of w-/p. If 1 < p < oo, let / G (w-/p)*, and put

b = (f(ei))^Z1, where (e¿)°^j is the unit basis. For every injection 7r from {1,..., n}

into N, the vector J27=i ^irM A      nas norm one m w~'p and so

n

supJ2rl/Pb*W^\\f\\*    and    bGd(v,l).
n<*i-i

Conversely, if b = (b^^i belongs to d(v, 1), we can define a linear functional / on

the linear span of the sequence (e¿)¿^x such that /(e¿) = 6¿ for every i. We denote

by [e,]"=1 the linear span of {ei,...,en}. On every subspace [e¿]"=1 / attains its

norm at an extreme point of the closed ball, and so we can write

sup sup      sup      I f(a) | = sup sup sup  f [Y]   \.V
n      rr    a£[en(l)]«=1 n      *   e, = ±l      \£¿     %l/p    )

l|a||<l

=£»-1/p*: = iHki
¿=i

and / admits a continuous linear extension to w-Zp with norm < ||6||„,i.    D
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The following result is a description of the Banach envelope of w-/p:

4.   PROPOSITION,   (a) IfO<p< 1, h is the Banach envelope o/w-/°.

(b) Ifl < p < oo, the Banach envelope ofw-l® can be identified with the sequence

space Gp of all sequences x — (xn)J°=1 such that

Tn    x*
lim   ^'=1   '     - "« £7=i*-1/p

normed by

IN = sup ̂
. E?=i^-1/P'

and £/ms if 1 < p < oo, w-/p can 6e identified with Gp.

PROOF, (a) is direct from Lemma 2.

In order to prove (b) since (en)n°=i is a basis of w-/p, its Banach envelope is the

closed linear span of (en)^Lx in the second dual of w-/p. This closed linear span was

computed by Garling [6, Theorems 11, 12] concluding the proof of the theorem.    D

The galb G(A) of a quasi-Banach space (see [8]) is the space of all sequences

(an)n°=i such that if xn G X and ||i„|| < 1, then (X)fc=i ak%k) is bounded. A is

said to be galbed by a space of sequences E if E C G(A).

A quasi-Banach space is p-convex (0 < p < 1) if it is galbed by lp. This is

equivalent to the existence of a constant A such that

iiz1 + ---+xnii<A(iiz1ir + --- + iix„ni/p

for xi,... ,xn G X. And it is said to be log-convex if it is galbed by the Orlicz

sequence space lv with <p(t) = t(l + log+ 1/t). This is equivalent to the existence

of a constant A such that

|zi H-r-z„|| < A ElNI   1 + 1°g+^+7
¿=i

for xi,...,xn € X.
The next theorem summarizes the convexity properties of w-Lp. The statement

(a) is well known, (b) was partially proved by Kalton in [8], and (c) is new, and its

proof is inspired by the proof of (b). We will suppose that the functions are defined

on (0, +oo) and p is the Lebesgue measure:

5.   THEOREM,   (a) w-Lp is locally convex if and only if p > 1.

(b) w-Lp is log-convex if and only if p > 1.

(c) //0 < p < 1, w-Lp is q-convex if and only if p > q.

PROOF, (b) Since w-Li is log-convex [8], we only need to prove that for 0 < p < 1

w-Lp is not log-convex. Fix n and let

/i = l"1/pX(o,i| + 2-1/pX(i,2] + • • • + n-^Xin-i,^,

h = n_1/PX(0,l] + 1-1/PX(1,2] + ' • ■ + (n - l)-1/PX(n-l,n],

fn = 2-1/PX(0,l] + 3-1/PX(I,2] + • • • + l-1/PX(n-l,«]-
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If 1 < » < n, HAH = 1 and || E?=1 fi || = n1/p(ET-i *~1/p)- Since

IIEÎUII/ill_
sup

" E?=ill/<ll(i + iog+(E"=ill/J-H/ll/ill))
n*i/py"    j-i/pEn

i=ll
= sup —/, ,T—r- = °°.

„      n(l + logn)

w-Lp is not log-convex.

(c) In order to prove that w-Lp is p-convex, let fi,- ■ ■ ,fn S w-Lp with ||/i||p +

• • • + ||/n||p = 1, and / = fi + • • • + /„. Let x > 0 and A = {t: \f(t)\ > x}. Let

p(A) = t. For 1 < i < n let Ez = {t: \fi(t)\ > (2/tY'p}. Then p(Ex) < (t/2)||/¿||p,
and thus, if E — Eili- ■ -L)En, then p(E) < r/2. Following the same steps as Kalton

[8, Theorem 3.4],

inf|/(í)l<-¿/      \fi(t)\dt

<-¿/min(|.A(í)|,
tí=iJa        \

t=i '

r       ( o\xip\
dt

(by [11, Lemma 3.17, p. 201])

l/p>

= IE ([ (l)1/P du + J'wfiWu-V'du]     (vñth c=T-\\fi\\")

2V   1/pmp   \\fi\y~1/p | {r/2Y-^pU\\p9    "= -T
rfr{[\r) "•"" -1 + 1/p    ' -1 + 1/p

r-i/P2i/p
-      1-P

Hence ^(A))1/?   <  inft6A \f(t)\r1,p  <  21/p/(l - p) and (/, +... + /n||   <

21/p/(l— p); thus w-Lp is p-convex. The converse can be proved using the technique

of (b).    D

REMARK. This theorem is also valid when the measure is atomic because a

sequence x = (xn)n can be regarded as a function / on (0, oo),

oo

/ = y^XnX(n-l,n],

n=l

and the norm of x in w-/p is the same as the norm of / in w-Lp.

We shall remark also that in [7, §2] it is proved that w-Lp is r-normed for r < p

when 0 < p < 1 and the measure is not atomic.
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