Quantum logics with lattice state spaces

Authors:
Jiří Binder and Mirko Navara

Journal:
Proc. Amer. Math. Soc. **100** (1987), 688-693

MSC:
Primary 81B10; Secondary 03G12, 06C15, 46L60

MathSciNet review:
894439

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a quantum logic and let denote the set of all states on . (By a state we mean a nonnegative bounded -additive measure, not necessarily normalized.) We ask whether every logic whose state space is a lattice has to be Boolean. We prove that this is so for finite logics and "projection logics." On the other hand, we show that there exist even concrete non-Boolean logics with a lattice state space (in fact, we prove that every countable concrete logic can be enlarged to a logic with a lattice state space). In the appendix we shortly consider the lattice properties of the set of observables and correct the paper [**10**].

**[1]**Erik Christensen,*Measures on projections and physical states*, Comm. Math. Phys.**86**(1982), no. 4, 529–538. MR**679201****[2]**R. J. Greechie,*Orthomodular lattices admitting no states*, J. Combinatorial Theory Ser. A**10**(1971), 119–132. MR**0274355****[3]**Stanley P. Gudder,*Stochastic methods in quantum mechanics*, North-Holland, New York-Oxford, 1979. North-Holland Series in Probability and Applied Mathematics. MR**543489****[4]**Richard V. Kadison,*Order properties of bounded self-adjoint operators*, Proc. Amer. Math. Soc.**2**(1951), 505–510. MR**0042064**, 10.1090/S0002-9939-1951-0042064-2**[5]**Pavel Pták,*Exotic logics*, Colloq. Math.**54**(1987), no. 1, 1–7. MR**928651****[6]**Pavel Pták and John D. Maitland Wright,*On the concreteness of quantum logics*, Apl. Mat.**30**(1985), no. 4, 274–285 (English, with Russian and Czech summaries). MR**795987****[7]**Robert M. Solovay,*Real-valued measurable cardinals*, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR**0290961****[8]**V. S. Varadarajan,*Geometry of quantum theory. Vol. I*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. The University Series in Higher Mathematics. MR**0471674****[9]**F. J. Yeadon,*Finitely additive measures on projections in finite 𝑊*-algebras*, Bull. London Math. Soc.**16**(1984), no. 2, 145–150. MR**737242**, 10.1112/blms/16.2.145**[10]**Neal Zierler,*Order properties of bounded observables*, Proc. Amer. Math. Soc.**14**(1963), 346–351. MR**0145863**, 10.1090/S0002-9939-1963-0145863-X

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
81B10,
03G12,
06C15,
46L60

Retrieve articles in all journals with MSC: 81B10, 03G12, 06C15, 46L60

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1987-0894439-1

Article copyright:
© Copyright 1987
American Mathematical Society