Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Nonisoclinic $ 2$-codimensional $ 4$-webs of maximum $ 2$-rank


Author: Vladislav V. Goldberg
Journal: Proc. Amer. Math. Soc. 100 (1987), 701-708
MSC: Primary 53A60
MathSciNet review: 894441
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In recent papers, the author has proved that $ 4$-webs $ {\text{W(4,2,2)}}$ of codimension 2 and maximum $ 2$-rank on a $ 4$-dimensional differentiable manifold are exceptional in the sense that they are not necessarily algebraizable, while maximum $ 2$-rank $ 2$-codimensional $ d$-webs $ {\text{W(d,2,2),}}d > 4$, are algebraizable. Examples of exceptional isoclinic webs W(4,2, 2) were given in those papers. In the present paper, the author proves that a polynomial nonisoclinic $ 3$-web $ {\text{W(3,2,2)}}$ cannot be extended to a nonisoclinic $ 4$-web $ {\text{W(4,2,2)}}$ and constructs an example of a nonisoclinic $ 4$-web $ {\text{W(4,2,2)}}$ of maximum $ 2$-rank.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akivis, The canonical expansions of the equations of a local analytic quasigroup, Dokl. Akad. Nauk SSSR 188 (1969), 967–970 (Russian). MR 0262413 (41 #7021)
  • [2] M. A. Akivis and A. M. Šelehov, The computation of the curvature and torsion tensors of a multidimensional three-web and of the associator of the local quasigroup that is connected with it, Sibirsk. Mat. Ž. 12 (1971), 953–960 (Russian). MR 0288680 (44 #5876)
  • [3] S.-S. Chern, Abzählungen für Gewebe, Abh. Math. Sem. Univ. Hamburg 11 (1936), 163-170.
  • [4] S. S. Chern and Phillip Griffiths, Abel’s theorem and webs, Jahresber. Deutsch. Math.-Verein. 80 (1978), no. 1-2, 13–110. MR 494957 (80b:53008)
  • [5] -, Corrections and addenda to our paper "Abel's theorem and webs", Jahresber. Deutsch. Math.-Verein. 83 (1981), 78-83.
  • [6] Shiing Shen Chern and Phillip A. Griffiths, An inequality for the rank of a web and webs of maximum rank, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 539–557. MR 507000 (80b:53009)
  • [7] V. V. Goldberg, On the theory of four-webs of multidimensional surfaces on a differentiable manifold $ {X_{2r}}$, Izv. Vyssh. Uchebn. Zaved. Mat. 21 (1977), No. 11, 118-121; English transl., Soviet Math. (Iz. VUZ) 21 (1977), No. 11, 97-100.
  • [8] Vladislav Goldberg, On the theory of 4-webs of multidimensional surfaces on a differentiable manifold 𝑋₂ᵣ, Serdica 6 (1980), no. 2, 105–119 (Russian). MR 601349 (82f:53023)
  • [9] Vladislav V. Goldberg, Tissus de codimension 𝑟 et de 𝑟-rang maximum, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 6, 339–342 (French, with English summary). MR 732501 (85f:53020)
  • [10] -, $ r$-rank problems for a web $ {\text{W(}}d,2,r{\text{)}}$, submitted.
  • [11] Vladislav V. Goldberg, 4-tissus isoclines exceptionnels de codimension deux et de 2-rang maximal, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 11, 593–596 (French, with English summary). MR 816637 (87b:53025)
  • [12] -, Isoclinic webs $ {\text{W(4,2,2)}}$ of maximum $ 2$-rank, Differential Geometry (Peniscola, 1985), Lecture Notes in Math., vol. 1209, Springer, Berlin and New York, 1986, pp. 168-183.
  • [13] Phillip A. Griffiths, On Abel’s differential equations, Algebraic geometry (J. J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md., 1976) Johns Hopkins Univ. Press, Baltimore, Md., 1977, pp. 26–51. MR 0480492 (58 #655)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A60

Retrieve articles in all journals with MSC: 53A60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0894441-X
PII: S 0002-9939(1987)0894441-X
Keywords: Web, rank, nonisoclinic web, maximum rank web, abelian equation, torsion and curvature tensor, basis affinor
Article copyright: © Copyright 1987 American Mathematical Society