ASYMPTOTIC BEHAVIOR OF p-PREDICTIONS
FOR VECTOR VALUED RANDOM VARIABLES

JUAN A. CUESTA AND CARLOS MATRÁN

ABSTRACT. Let (Ω, σ, μ) be a probability space and let X be a B-valued
μ-essentially bounded random variable, where $(B, \| \|)$ is a uniformly convex
Banach space. Given α, a sub-σ-algebra of σ, the p-prediction ($1 < p < \infty$)
of X is defined as the best L_p-approximation to X by α-measurable random
variables.

The paper proves that the Pólya algorithm is successful, i.e. the p-prediction
converges to an "∞-prediction" as $p \to \infty$. First the proof is given for p-means
(p-predictions given the trivial σ-algebra), and the general case follows from
the characterization of the p-prediction in terms of the p-mean of the identity
in B with respect to a regular conditional probability. Notice that the problem
was treated in [7], but the proof is not satisfactory (as pointed out in [4]).

1. Introduction. Throughout this paper (Ω, σ, μ) denotes a probability space,
$(B, \| \|)$ is a uniformly convex Banach space, and $L_p(\sigma) = L_p(\Omega, \sigma, \mu, B)$,
$1 \leq p \leq \infty$, represents the abstract Lebesgue-Bochner L_p-space. If α is a sub-σ-algebra of
σ, $L_p(\alpha)$ denotes the (closed) subspace of $L_p(\sigma)$ consisting in all the equivalence
classes in $L_p(\sigma)$ containing an α-measurable function. In this notation we will
not make any distinction between a random variable and the equivalence class it
represents. Recall that random variables in $L_p(\alpha)$ are strongly α-measurable, i.e.
they are a.s. limits of finite valued α-measurable random variables.

In [1] Ando and Amemiya have introduced the p-predictions given a σ-algebra for
real valued random variables. In an analogous way, taking into account that $L_p(\sigma)$,
$1 < p < \infty$, is uniformly convex, we may consider the p-prediction of a variable
$X \in L_p(\sigma)$ given the sub-σ-algebra α as the (unique) best L_p-approximation to
X by elements of $L_p(\alpha)$. Therefore the p-prediction will be continuous in $L_p(\sigma)$.
However there exist important differences between the real and the abstract cases.
For instance, it is well known that if $B = \mathbb{R}$ and $p = 2$, the 2-prediction given
α coincides with the conditional mean given α, while this is not true for general
uniformly convex spaces. In fact the conditional mean is always linear (see Diestel
and Uhl [8, p. 122]) but the 2-prediction is not linear unless B is a Hilbert space
or Ω is the union of two μ-atoms (Herrndorf [10]).

This paper deals with the study of the limit of p-predictions as $p \to \infty$. In the
remainder of this work we consider a fixed μ-essentially bounded random variable
X (i.e. $X \in L_\infty(\sigma)$) and we will prove that the p-prediction of X given the (fixed)
sub-σ-algebra α converges to a best L_∞-approximation of X by elements of $L_\infty(\alpha)$
(or ∞-prediction of X given α).

For real valued random variables this result was proved in [3]. Notice that the
study of the convergence as $p \to \infty$ of p-predictions on uniformly convex spaces

Received by the editors June 1, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 60G30, 28B05, 60B12.
was carried out in [7], but the proof of the existence of the limit is not satisfactory as pointed out in [4]. (Also in connection with the Pólya algorithm see [5].) Our proof consists of two stages. First we prove that the p-prediction, $1 < p < \infty$, given α can be obtained as the p-prediction (given the trivial σ-algebra) with respect to a regular conditional probability. For notational convenience, the p-prediction given the trivial σ-algebra or best L_p-approximation by constants will be called p-mean, in connection with the real case. At a second stage we will prove that the p-mean converges, as $p \to \infty$, to the Chebysev center of the probabilistic support of X (the Midrange in the real case).

2. p-predictions and regular conditional probabilities. This section is devoted to establish the relation between the p-prediction of X and the conditional probability distribution of X given α.

Given any metric space (E, d), β_E denotes the Borel σ-algebra on E. The weak convergence of measures will be denoted by $\overrightarrow{\implies}$.

Recall that an α-measurable function is strongly α-measurable iff its image is a.s. contained in a separable subset of B.

Let P_X denote the probability measure induced by X on (B, β_B). There exists a unique smaller closed set in B of P_X-probability one. Moreover this set, which we denote by $S(X)$, is separable (it is called the support of the probability P_X). Therefore the set $\Gamma_S(X)$ of all probability measures defined on $\beta_S(X)$ is separable and metrizable with the topology associated to the weak convergence of measures (see Parthasarathy [11, p. 43]).

Now, considering the sub-σ-algebra α of σ, since $S(X)$ is separable, there exists (see Ash [2, p. 265]) a function $Q_\alpha : \Omega \times \beta_S(X) \to R$ such that:

(a) For every $w \in \Omega$, $Q_\alpha(w, \cdot)$ is a probability measure on $\beta_S(X)$ (hence we can also consider it as a probability on β_B).

(b) For every $A \in \beta_S(X)$, $Q_\alpha(\cdot, A)$ is a version of $\mu[X \in A/\alpha]$, the conditional distribution of X given α.

Also, since X is μ-essentially bounded, we can choose Q_α verifying

(c) For every $w \in \Omega$ the identity map on B is $Q_\alpha(w, \cdot)$-essentially bounded.

Q_α will be called a regular conditional probability (R.C.P.) of X given α, and we have

Proposition 2.1. The mapping $T : \Omega \to \Gamma_S(X)$ defined by $T(w) = Q_\alpha(w, \cdot)$ is strongly α-measurable (we consider on $\Gamma_S(X)$ the Borel σ-algebra associated with the weak convergence of measures).

Proof. Let F be the set of all continuous bounded real valued functions defined on B. Then the family of subsets of $\Gamma_S(X)$,

$$\left\{ Q \in \Gamma_S(X), \left| \int f \, dQ - \int f \, dP \right| < \delta \right\}, \quad \delta > 0, \quad f \in F, \quad P \in \Gamma_S(X),$$

is a subbase of the topology on $\Gamma_S(X)$, and, since $\Gamma_S(X)$ is separable, it suffices to show that for $\delta > 0, f \in F$, and $P \in \Gamma_S(X)$:

$$\left\{ w/ \left| \int f(t)Q_\alpha(w, dt) - \int f(t)P(dt) \right| < \delta \right\} \in \alpha.$$

But this is obvious because the map $w \to \int f(t)Q_\alpha(w, dt)$ is α-measurable. \square
In the next proposition we use the Skorohod representation theorem for weak convergence of probability measures (see Skorohod [12]), stated for convenience in the following way.

"Let \(P_n, n = 0, 1, 2, \ldots, \) belong to \(\Gamma_{S(X)} \) and \(P_n \xrightarrow{w} P_0. \) Then there exist \(S(X) \)-valued random variables \(Y_0, Y_1, Y_2, \ldots \) defined on an appropriate probability space \((W, \Phi, L) \) such that:

(i) \(Y_n, n = 0, 1, 2, \ldots, \) induces on \((S(X), \beta_{S(X)}) \) the probability \(P_n. \)

(ii) \(Y_n \rightarrow Y_0 \) \(L\text{-a.s.} \)

Now, let \(Q \in \Gamma_{S(X)}. \) Define \(H_p(Q), 1 < p < \infty, \) to be the \(p \)-mean, computed in \(L_p(B, \beta_B, Q, B) \), of the identity on \(B. \) Then

Proposition 2.2. \(H_p: \Gamma_{S(X)} \rightarrow B \) is a continuous map.

Proof. Let \(Q_n \in \Gamma_{S(X)}, n = 0, 1, 2, \ldots, \) such that \(Q_n \xrightarrow{w} Q_0 \) (recall that \(\Gamma_{S(X)} \) is metrizable) and let \(Y_n, n = 0, 1, 2, \ldots, \) be the \(S(X) \)-valued random variables obtained from Skorohod's theorem. Also observe that the \(p \)-mean of a variable depends only on the probability induced by the variable (the law of the random variable).

But, as \(S(X) \) is bounded, \(Y_n \rightarrow Y_0 \) also in \(L_p \) (a distinct \(L_p \)), so the result is obtained from the continuity of the \(p \)-mean (recall that \(L_p(W, \Phi, L, B) \) is also uniformly convex). \(\square \)

Corollary 2.3. The map \(M_p: \Omega \rightarrow B \) defined by \(M_p(w) = H_p(Q_{\alpha}(w, \cdot)) \) is strongly \(\alpha \)-measurable.

Proof. By Propositions 2.1 and 2.2 \(M_p \) is \(\alpha \)-measurable, but moreover \(M_p(\Omega) \subset H_p(\Gamma_{S(X)}) \) which is separable as the image of a separable set by a continuous function. \(\square \)

The fundamental theorem in this section is based in the following result.

Lemma 2.4. Let \(X \) be a \(B \)-valued random variable on \((\Omega, \sigma, \mu) \) and let \(H: B \times \Omega \rightarrow R \) be \(\beta_B \times \sigma \)-measurable such that \(H(X, Id) \in L_1(\Omega, \sigma, \mu, R). \) Then \(\int H(t, \cdot) Q_{\alpha}(\cdot, dt) \) is a version of the conditional mean of \(H(X, Id) \) given the sub-\(\sigma \)-algebra \(\sigma \) of \(\alpha. \)

Proof. A standard reasoning proves the statement (begin with \(H = I_{D \times A}, \) where \(D \in \beta_B, A \in \alpha. \)) \(\square \)

Theorem 2.5. The random variable \(M_p \) defined in Corollary 2.3 is a version of the \(p \)-prediction of \(X \) given \(\alpha \) (i.e. the \(p \)-prediction of \(X \) given \(\alpha \) coincides with the \(p \)-mean of the identity with respect to \(Q_\alpha \)).

Proof. Let \(g \in L_p(\alpha). \) By Lemma 2.4,

\[
\|X - g\|_p^p = \int \left[\int \|t - g(w)\|_p^p Q_\alpha(w, dt) \right] \mu(dw) \geq \int \left[\int \|t - M_p(w)\|_p^p Q_\alpha(w, dt) \right] \mu(dw) = \|X - M_p\|_p^p;
\]

hence Corollary 2.3 and the uniqueness of \(p \)-predictions prove the result. \(\square \)
3. The Pólya algorithm for p-predictions (vector valued case). The existence and uniqueness of the best L_∞-approximation by constants in uniformly convex spaces is well known (see Garkavi [9] or Singer [13]). In fact, the Chebysev center of $S(X)$ (which we denote by π_∞) is the best L_∞-approximation to X. In this section we will prove that the p_n-predictions given α converge on an "∞-prediction given $\alpha^n"$ as $p_n \to \infty$. Hence the Pólya algorithm holds for these L_p-approximations.

Some additional notation will be employed: $\pi_p(X/\alpha)$ is the p-prediction of X given α, π_p is the p-mean of X ($1 < p < \infty$), and $V_p = \inf\{\|X - h\|_p, h \in B\}$ ($1 < p \leq \infty$). Note that, obviously, $V_\infty \geq V_p$ for all p.

We need a previous theorem.

Theorem 3.1. If $0 < m < V_\infty$ then there exists a $\delta > 0$ such that for every $h \in B$, $\mu\{w/\|X(w) - h\| \leq V_\infty - m\} \leq 1 - \delta$.

Proof. Suppose not. Then there exist $m < V_\infty$ and a sequence $(h_k)_k$ in B such that for each k: $\mu\{\|X - h_k\| \leq V_\infty - m\} > 1 - 1/k$.

Moreover, since $S(X)$ is bounded, we can choose the sequence verifying $h_k \to h_0$ weakly in B.

Let $t \in S(X)$ and let $\tau < m/2$; the definition of $S(X)$ entails that

$$\mu\{w/\|X(w) - t\| < \tau\} > 0.$$

Therefore there exists n_0 such that for $k \geq n_0$,

$$\{\|X - h_k\| \leq V_\infty - m\} \cap \{\|X - t\| < \tau\} \neq \emptyset,$$

so $\|h_k - t\| \leq V_\infty - m/2$. But this implies $\|h_0 - t\| \leq \lim_k \|h_k - t\| \leq V_\infty - m/2$ for all $t \in S(X)$, contradicting the definition of V_∞. □

Theorem 3.2. There exists $\pi_\infty(X/\alpha) \in L_\infty(\alpha)$ such that $\pi_{p_n}(X/\alpha) \to \pi_\infty(X/\alpha)$ a.s. as $p_n \to \infty$, and $\|X - \pi_\infty(X/\alpha)\|_\infty \leq \|X - h\|_\infty$ for every $h \in L_\infty(\alpha)$.

Proof. From Theorem 2.5 it is obvious that for proving the convergence it suffices to consider the case in which α is the trivial σ-algebra. We will prove that $\pi_{p_n} \to \pi_\infty$ (the Chebysev center of $S(X)$).

If not, then there exist $\tau > 0$ and a subsequence, which we denote as the initial, such that $\|\pi_{p_n} - \pi_\infty\| > \tau$ for all n.

Let $m > 0$ and suppose that t is in B and verifies $\|t - \pi_\infty\| \leq V_\infty$ and $\|t - \pi_{p_n}\| \leq V_\infty + m$. Then, if we call θ to the modulus of convexity of B,

$$\|t - \frac{1}{2}(\pi_{p_n} + \pi_\infty)\| \leq \{1 - \theta(\tau/(V_\infty + m))\}(V_\infty + m).$$

Take $m_0 > 0$. As θ is a nondecreasing function, choosing $0 < m < m_0$ small enough, there exists $\tau > 0$ such that

$$(*) \quad \|t - \frac{1}{2}(\pi_\infty + \pi_{p_n})\| \leq V_\infty - \tau.$$

Since $\mu\{w/\|X(w) - \pi_\infty\| \leq V_\infty\} = 1$ by definition of V_∞, $(*)$ and Theorem 3.1, with $\frac{1}{2}(\pi_\infty + \pi_{p_n})$ as h, imply $\mu\{w/\|X(w) - \pi_{p_n}\| \leq V_\infty + m\} \leq 1 - \delta(\tau)$. Therefore $V_{p_n} \geq (V_\infty + m)(\delta(\tau))^{1/p_n}$ which contradicts that $V_\infty \geq V_p$ for all p.

Finally, the fact that $\pi_\infty(X/\alpha)$ is an ∞-prediction is obtained from Egoroff’s theorem with similar techniques to those employed in [3]. □
REFERENCES

DEPARTAMENTO DE MATEMATICAS, UNIVERSIDAD DE SANTANDER, SANTANDER, SPAIN

CURRENT address of J. A. Cuesta

DEPARTAMENTO DE ESTADISTICA, UNIVERSIDAD DE VALLADOLID, VALLADOLID, SPAIN

CURRENT address (Carlos Matrán): Departamento de Matematicas, Universidad Autonoma de Madrid, Madrid, Spain