Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Minimal functions, martingales, and Brownian motion on a noncompact symmetric space


Author: J. C. Taylor
Journal: Proc. Amer. Math. Soc. 100 (1987), 725-730
MSC: Primary 60B15; Secondary 58G32, 60G44, 60J65
MathSciNet review: 894445
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Brownian motion on $ {{\mathbf{R}}^n}$ may be characterized as a process $ {({X_t})_{t \geqslant 0}}$ on a probability space $ (\Omega ,\mathfrak{F},P)$ such that, for all $ y \in {{\mathbf{R}}^d},\exp \left\{ { - (t/2)\vert\vert y\vert{\vert^2} + \left\langle {y,{X_t}} \right\rangle } \right\}$ is a martingale of expectation one. The analogue of this fact is proved for the Brownian motion on a noncompact symmetric space.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60B15, 58G32, 60G44, 60J65

Retrieve articles in all journals with MSC: 60B15, 58G32, 60G44, 60J65


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0894445-7
PII: S 0002-9939(1987)0894445-7
Article copyright: © Copyright 1987 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia