Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Induced universal maps and some hyperspaces with the fixed point property


Author: Sam B. Nadler
Journal: Proc. Amer. Math. Soc. 100 (1987), 749-754
MSC: Primary 54B20; Secondary 54C10, 54F20
DOI: https://doi.org/10.1090/S0002-9939-1987-0894449-4
MathSciNet review: 894449
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a (metric) continuum $ Z$, let $ {2^Z}$ (resp., $ C(Z)$) denote the space of all nonempty compacta (resp., continua) in $ Z$ with the Hausdorff metric. We prove: (1) If $ f$ is a monotone map of a continuum $ X$ onto a Peano continuum $ Y$, then, for any maps $ g:{2^X} \to {2^Y}$ and $ h:C(X) \to C(Y)$, there is $ A \in {2^X}$ and $ B \in C(X)$ such that $ f(A) = g(A)$ and $ f(B) = h(B)$. We use (1) to prove: (2) If $ X$ is an inverse limit of dendrites with quasi-monotone bonding maps, then $ {2^X}$ and $ C(X)$ have the fixed point property. Thus, we have a proof that for certain indecomposable continua $ X,{2^X}$ has the fixed point property.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, Theory of retracts, Monografie Math., vol. 44, Polish Sci. Publ., Warszawa, Poland, 1967. MR 0216473 (35:7306)
  • [2] -, Theory of shape, Monografie Mat., vol. 59, Polish Sci. Publ., Warszawa, Poland, 1975. MR 0418088 (54:6132)
  • [3] D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), 19-38. MR 512241 (80k:54010)
  • [4] W. Holsztyński, On the composition and products of universal mappings, Fund. Math. 64 (1969), 181-188. MR 0243491 (39:4812)
  • [5] -, On the product and composition of universal mappings of manifolds into cubes, Proc. Amer. Math. Soc. 58 (1976), 311-314. MR 0407832 (53:11602)
  • [6] -, Universal mappings and fixed point theorems, Bull. Acad. Polon. Sci. 15 (1967), 433-438. MR 0221493 (36:4545)
  • [7] -, Universality of mappings onto the products of snake-like spaces, Bull. Acad. Polon. Sci. 16 (1968), 161-167. MR 0230294 (37:5857)
  • [8] J. Krasinkiewicz, Curves which are continuous images of tree-like continua are movable, Fund. Math. 89 (1975), 233-260. MR 0388358 (52:9195)
  • [9] K. Kuratowski, Topology, vol. II, Academic Press, New York and London, 1968. MR 0259835 (41:4467)
  • [10] A. Y. W. Lau, A note on monotone maps and hyperspaces, Bull. Acad. Polon. Sci. 24 (1976), 121-123. MR 0410699 (53:14446)
  • [11] S. B. Nadler, Jr., Hyperspaces of sets, Dekker, New York and Basel, 1978. MR 0500811 (58:18330)
  • [12] -, Universal mappings and weakly confluent mappings, Fund. Math. 110 (1980), 221-235. MR 602888 (82h:54057)
  • [13] S. B. Nadler, Jr., and J. T. Rogers, Jr., A note on hyperspaces and the fixed point property, Colloq. Math. 25 (1972), 255-257. MR 0377829 (51:13998)
  • [14] D. R. Read, Confluent and related mappings, Colloq. Math. 29 (1974), 233-239. MR 0367903 (51:4145)
  • [15] J. Segal, A fixed point theorem for the hyperspace of a snake-like continuum, Fund. Math. 50 (1962), 237-248. MR 0139144 (25:2582)
  • [16] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942. MR 0007095 (4:86b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B20, 54C10, 54F20

Retrieve articles in all journals with MSC: 54B20, 54C10, 54F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0894449-4
Keywords: CE-map, continuum, dendrite, fixed point property, hyperspaces, indecomposable continuum, inverse limit, monotone map, Peano continuum, quasi-monotone map, universal map
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society