Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free products of lattice-ordered groups


Author: A. M. W. Glass
Journal: Proc. Amer. Math. Soc. 101 (1987), 11-16
MSC: Primary 06F15; Secondary 20B22, 20E06
DOI: https://doi.org/10.1090/S0002-9939-1987-0897063-X
MathSciNet review: 897063
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a highly homogeneous representation for the free product of two nontrivial countable lattice-ordered groups and obtain, as a consequence of the method, that the free product of nontrivial lattice-ordered groups is directly indecomposable and has trivial center.


References [Enhancements On Off] (What's this?)

  • [1] A. M. W. Glass, $ l$-simple lattice-ordered groups, Proc. Edinburgh Math. Soc. 19 (1974), 133-138. MR 0409309 (53:13069)
  • [2] -, Ordered permutation groups, London Math. Soc. Lecture Notes Series, no. 55, Cambridge Univ. Press, 1981. MR 645351 (83j:06004)
  • [3] -, Effective embeddings of countable lattice-ordered groups, Proc. 1st Internat. Sympos. on Ordered Algebraic Structures, Luminy-Marseilles, 1984 (S. Wolfenstein, Ed.), Research & Exposition in Math., 14, Heldermann-Verlag, pp. 63-69. MR 891449 (88m:06019)
  • [4] A. M. W. Glass and J. S. Wilson, Normal subgroups with non-trivial centraliser in doubly homogeneous permutation groups (unpublished manuscript).
  • [5] W. C. Holland, Group equations which hold in lattice-ordered groups, Symposia Math. 21 (1977), 365-378.
  • [6] V. M. Kopytov, Free lattice-ordered groups, Siberian Math. J. 24 (1983), 98-101 (English translation). MR 688598 (84d:06024)
  • [7] J. Martinez, Free products in varieties of lattice-ordered groups, Czechoslovak Math. J. 22 (97) (1972), 535-553. MR 0311536 (47:98)
  • [8] S. H. McCleary, $ o - 2$-transitive ordered permutation groups, Pacific J. Math. 49 (1973), 425-429. MR 0349525 (50:2018)
  • [9] -, Free lattice-ordered groups, Ordered Algebraic Structures (W. B. Powell and C. Tsinakis, eds.), Lecture Notes in Pure and Applied Math., vol. 99, Marcel Dekker, New York, 1985, pp. 139-154. MR 823768 (87d:06054)
  • [10] -, Free lattice-ordered groups represented as $ o - 2$-transitive $ l$-permutation groups, Trans. Amer. Math. Soc. 290 (1985), 69-79. MR 787955 (86m:06034a)
  • [11] N. Ya. Medvedev, Decomposition of free $ l$-groups into $ l$-direct products, Siberian Math. J. 21 (1980), 691-696 (English translation). MR 592218 (82b:06018)
  • [12] W. B. Powell and C. Tsinakis, Free products of abelian $ l$-groups are cardinally indecomposable, Proc. Amer. Math. Soc. 86 (1982), 385-390. MR 671199 (84a:06011)
  • [13] -, Free products of lattice-ordered groups, Algebra Universalis 18 (1984), 178-198. MR 743466 (85m:06034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06F15, 20B22, 20E06

Retrieve articles in all journals with MSC: 06F15, 20B22, 20E06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0897063-X
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society