Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ K$-theoretic triviality for Rickart $ C\sp \ast$-algebras and $ \aleph\sb 0$-continuous regular rings


Author: Claudi Busqué
Journal: Proc. Amer. Math. Soc. 101 (1987), 24-28
MSC: Primary 46L80; Secondary 16A54, 19K99, 46L05
DOI: https://doi.org/10.1090/S0002-9939-1987-0897065-3
MathSciNet review: 897065
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that if $ R$ is a purely infinite Rickart $ {C^*}$-algebra or a purely infinite right $ {\aleph _0}$-continuous regular ring, then $ R$ is an infinite sum ring and hence $ {K_i}(R) = 0$ for all $ i$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L80, 16A54, 19K99, 46L05

Retrieve articles in all journals with MSC: 46L80, 16A54, 19K99, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0897065-3
Keywords: Purely infinite Rickart $ {C^*}$-algebra, purely infinite right $ {\aleph _0}$-continuous regular ring, infinite sum ring
Article copyright: © Copyright 1987 American Mathematical Society