A THEOREM ON WEIGHTED L^1-APPROXIMATION

DARRELL SCHMIDT

ABSTRACT. It is proven that the A-property is necessary for a finite-dimensional subspace to be Chebyshev in $C(K)$ with respect to the weighted L^1-norm $\|f\|_w = \int_K w|f| \, d\mu$ for all weight functions w in certain classes of functions.

1. Introduction. Let K be a compact subset of \mathbb{R}^s ($s \geq 1$) satisfying $K = \text{Int}(K)$ and denote by $C(K)$ the space of all continuous, real-valued functions on K. Let $W_{\infty} = \{w \in L^\infty(K) : w > 0 \text{ on } K\}$, and for $w \in W_{\infty}$ let $C_w(K)$ denote the space $C(K)$ with the w-weighted L^1-norm

$$\|f\|_w = \int_K w|f| \, d\mu,$$

where μ denotes Lebesgue measure. We say that a finite-dimensional subspace U of $C(K)$ is Chebyshev in $C_w(K)$ if every $f \in C(K)$ has a unique best approximation from U with respect to the norm (1).

Recent interest in the Chebyshev subspaces of $C(K)$ with L^1-norms was inspired by the discoveries that spaces of spline functions are Chebyshev in $C([0,1])$ in addition to the subspaces of $C([0,1])$ that satisfy the Haar condition on $(0,1)$ (see [8] and its references). A unifying feature of these spaces is the so called A-property (defined in §2), and Strauss [10] proved that if U satisfies the A-property, then U is Chebyshev in $C_1[0,1]$. This result is easily generalized for any $w \in W_{\infty}$ and any K as above. When $K = [0,1]$, Kroó [1] established a converse showing that if U is Chebyshev in $C_w[0,1]$ for all $w \in W_B = \{w \in W_{\infty} : \inf w > 0\}$, then U is an A-space, and Sommer [7] generalized this result to the multivariate setting. Independent of Kroó, Pinkus [6] sought a converse using only the continuous weight functions and succeeded under the additional assumption that $\mu(Z(u)) = \mu(\text{Int}(Z(u)))$ for all $u \in U$ where $Z(u) = \{x \in K : u(x) = 0\}$. Subsequently, Kroó [3] removed this condition for any K as above showing that the A-property is necessary for U to be Chebyshev in $C_w(K)$ for all $w \in W_C = \{w \in C(K) : w > 0 \text{ on } K\}$. It is natural to ask whether the analytic or even the polynomial weight functions suffice. Indeed, when $K = [0,1]$ and U satisfied Pinkus’ condition, Kroó [2] showed that the C^∞-weight functions suffice. In this note we give general conditions on $W \subseteq W_{\infty}$ that the A-property is necessary for U to be Chebyshev in $C_w(K)$ for all $w \in W$.

THEOREM 1. Let W be a conex cone in W_{∞} satisfying the condition

$$\int\int_K \int q \, w q \, d\mu \geq 0$$

if q is a bounded, measurable function and $\int_K w q \, d\mu \geq 0$ for all $w \in W$, then $q \geq 0$ a.e. on K.

Received by the editors May 21, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 41A52.

©1987 American Mathematical Society
0002-9939/87 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
If a finite-dimensional subspace U of $C(K)$ is Chebyshev in $C_w(K)$ for all $w \in W$, then U is an A-space.

Evidently W_∞ satisfies condition (2) and an argument using Lusin’s theorem shows that W_C also satisfies (2). Moreover any convex cone W in W_∞ whose L^∞-closure contains W_C also satisfies (2). In particular, $W_P = \{ w \in W_C : w$ is a polynomial in s variables $\}$ and, when $K = [0,1]$, $W_S = \{ w \in W_\infty : w$ is a step function $\}$ satisfy (2). Hence, we answer the question above in the affirmative. Our proof involves an application of the Lyapunov theorem on vector measures which not only yields a more far reaching result than those of Kroó and Pinkus but also simplifies their proofs substantially.

2. Proof of Theorem 1. We shall make use of a lemma on moments which is somewhat more general than a similar lemma used by Kroó [4].

Lemma. Let (Ω, Σ, ν) be a finite, positive measure space, let
\[S = \text{span}\{s_1, \ldots, s_n\} \]
be an n-dimensional subspace of $L^\infty(\Omega)$, let W be a convex cone in $L^\infty(\Omega)$ satisfying Condition (2) (with $K = \Omega$), and let
\[A_n = \left\{ \left(\int_\Omega w s_i \, d\nu \right)^n : w \in W \right\} \subseteq \mathbb{R}^n. \]
If S contains no nontrivial functions that are nonnegative ν-a.e. on Ω, then $A_n = \mathbb{R}^n$.

Proof. Since W is a convex cone and is nonempty by (2), A_n is a nonempty convex cone in \mathbb{R}^n. Suppose $A_n \neq \mathbb{R}^n$. Then A_n has boundary point, say x. By the supporting hyperplane theorem, there exists a nontrivial linear functional φ on \mathbb{R}^n, given by $\varphi(\xi_i)_{i=1}^n = \sum_{i=1}^n \alpha_i \xi_i$, such that $\varphi(x) = \inf \varphi(A_n)$. Since A_n is a cone and φ is bounded below on A_n, $\inf \varphi(A_n) = 0$, and thus
\[0 \leq \varphi \left(\int_\Omega w s_i \, d\nu \right)^n = \int_\Omega w \left(\sum_{i=1}^n \alpha_i s_i \right) \, d\nu \]
for all $w \in W$. By (2), $s = \sum_{i=1}^n \alpha_i s_i \geq 0 \nu$-a.e. on Ω which is a contradiction, and the lemma is proven.

We now define the A-property. For $f \in C(K)$, let $Z(f) = \{ x \in K : f(x) = 0 \}$ and $\text{supp}(f) = K \setminus Z(f)$. For a subspace U of $C(K)$, let
\[U^* = \{ u^* \in C(K) : |u^*| = |u| \text{ on } K \text{ for some } u \in U \}. \]

Definition. We say that a finite-dimensional subspace U of $C(K)$ satisfies the A-property (or is an A-space) if for every $u^* \in U^* \setminus \{0\}$ there exists $u \in U \setminus \{0\}$ such that $u = 0$ a.e. on $Z(u^*)$ and $uu^* \geq 0$ on K.

We shall use a standard characterization of best L^1-approximations and a characterization of the Chebyshev subspaces of $C_w(K)$ for fixed $w \in W_\infty$ due to Strauss [9]. Actually, Strauss proved Theorem 3 for $w = 1$ and $K = [0,1]$, but his proof readily yields the more general version.

Theorem 2. Let U be a subspace of $C(K)$, $w \in W_\infty$, and $f \in C(K) \setminus U$. Then 0 is a best approximation to f from U with respect to the norm $\| \cdot \|_w$ if and only if
there exists \(\psi \in L^{\infty}(\mathcal{Z}(f)) \) with \(|\psi| \leq 1 \) such that
\[
\int_{\text{supp}(f)} wu \text{sgn} f \, d\mu + \int_{\mathcal{Z}(f)} wu \psi \, d\mu = 0
\]
for all \(u \in U \).

Theorem 3. A finite-dimensional subspace \(U \) of \(C(K) \) is Chebyshev in \(C_w(K) \), \(w \in W_{\infty} \), if and only if for every \(u^* \in U^* \setminus \{0\} \), 0 is not a best approximation to \(u^* \) from \(U \) relative to the norm \(\| \cdot \|_w \).

Proof of Theorem 1. Suppose \(U \) is Chebyshev in \(C_w(K) \) for every \(w \in W \), and let \(u^* \in U^* \setminus \{0\} \). We have that \(\sigma = \text{sgn} u^* \) is continuous at each point of \(\text{supp}(u^*) \). Let \(U_1 = \{ u \in U : u = 0 \text{ a.e. on } \mathcal{Z}(u^*) \} \). We need to show that there exists \(u_1 \in U_1 \setminus \{0\} \) such that \(\sigma u_1 \geq 0 \) on \(\text{supp}(u^*) \). Assume that no such \(u_1 \) exists. Let \(\{ g_1, \ldots, g_k \} \) be a basis for \(U_1 \), and choose \(g_{k+1}, \ldots, g_n \in U \) so that \(\{ g_1, \ldots, g_n \} \) is a basis for \(U \). Letting \(U_2 = \text{span}\{ g_{k+1}, \ldots, g_n \} \), we have that \(U = U_1 \oplus U_2 \).

By definition of \(U_1 \), if \(u_2 \in U_2 \) and \(u_2 = 0 \) a.e. on \(\mathcal{Z}(u^*) \), then \(u_2 = 0 \). We apply the Lyapunov theorem on vector measures to \(g_{k+1}, \ldots, g_n \) on \(\mathcal{Z}(u^*) \) to obtain a measurable function \(\psi : \mathcal{Z}(u^*) \rightarrow \{-1, 1\} \) such that
\[
\int_{\mathcal{Z}(u^*)} u_2 \psi \, d\mu = 0
\]
for all \(u_2 \in U_2 \). (See Lemma 2 in [5] for the precise version of Lyapunov's theorem used here.) For simplicity, we redefine \(\sigma = \psi \) on \(\mathcal{Z}(u^*) \). By (3), if \(u_2 \in U_2 \) and \(\sigma u_2 \geq 0 \) a.e. on \(\mathcal{Z}(u^*) \), then \(u_2 = 0 \).

We now have that if \(u \in U \) and \(\sigma u \geq 0 \) a.e. on \(K \), then \(u = 0 \). To see this, write \(u = u_1 + u_2 \) whence \(u_1 \in U_1 \) and \(u_2 \in U_2 \) and suppose that \(\sigma u \geq 0 \) a.e. on \(K \). Then \(\sigma u_2 \geq 0 \) a.e. on \(\mathcal{Z}(u^*) \) and thus \(u_2 = 0 \). Thus \(\sigma u_1 \geq 0 \) a.e. on \(K \). Since \(\sigma \) is continuous at each point of \(\text{supp}(u^*) \), \(\sigma u_1 \geq 0 \) on \(\text{supp}(u^*) \), and by assumption, \(u_1 = 0 \).

We have that the finite-dimensional subspace \(S = \{ \sigma u : u \in U \} \) contains no nontrivial elements that are nonnegative a.e. on \(K \). Moreover, each element of \(S \) is bounded, and by (2) and the Lemma there exists \(w \in W \) such that
\[
\int_K wu \sigma \, d\mu = 0
\]
for all \(u \in U \). Since \(\sigma = \text{sgn} u^* \) on \(\text{supp}(u^*) \), (4) and Theorem 2 imply that 0 is a best approximation to \(u^* \) from \(U \) relative to \(\| \cdot \|_w \), and by Theorem 3, \(U \) is not Chebyshev in \(C_w(K) \), a contradiction. The proof of Theorem 1 is complete.

References

DEPARTMENT OF MATHEMATICAL SCIENCES, OAKLAND UNIVERSITY, ROCHESTER, MICHIGAN 48063