Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Denting points in tensor products of Banach spaces


Author: Dirk Werner
Journal: Proc. Amer. Math. Soc. 101 (1987), 122-126
MSC: Primary 46B20; Secondary 46M05
DOI: https://doi.org/10.1090/S0002-9939-1987-0897081-1
MathSciNet review: 897081
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let dent $ A$ denote the set of denting points of a subset $ A$ of some Banach space. We prove

$\displaystyle {\text{dent cl co(}}K \otimes L) = {\text{dent }}K \otimes {\text{dent }}L$

for closed, bounded, absolutely convex subsets $ K$ and $ L$ of Banach spaces $ X$ and $ Y$. Here the closure refers to the completion of $ X \otimes Y$ w.r.t. some reasonable crossnorm.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 46M05

Retrieve articles in all journals with MSC: 46B20, 46M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0897081-1
Keywords: Denting point, tensor product
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society