ABSTRACT. We prove some results concerning the covering, additivity, and
the uniform numbers for general topological spaces.

For any dense-in-itself T_1 topological space X let us put $\text{cov}(X) = \inf\{|\mathcal{R}|: \mathcal{R}

\text{is a family of nowhere dense subsets of } X \text{ covering } X\}$. Then $\text{cov}(X)$ is always an
infinite cardinal that does not exceed $|X|$, the cardinality of X. If $\text{cov}(X)$ is an
uncountable cardinal, then X is second category, and if $\text{cov}(U)$ is uncountable for
every nonempty open subset of X, then X is a Baire space.

Let us put $\text{cov}^2(X) = \inf\{\text{cov}(F): F \text{ is a closed, nonempty, dense-in-itself sub-

space of } X\}$. If $\text{cov}^2(X)$ is an uncountable cardinal, then X is usually called a totally
nonmeager space [1] (sometimes it is also called a totally inexhaustible space [8]).

In [8], the behavior of totally nonmeager spaces under feebly continuous and
feebly open mappings have been considered (see also [2]). Let us recall [4] that
a mapping f of a space X onto a space Y is feebly continuous if $\text{int } f^{-1}(V) \neq \emptyset$
whenever V is nonempty and open in Y, and f is feebly open if $\text{int } f(U) \neq \emptyset$.
whenever U is nonempty and open in X. T. Neubrunn [9] conjectured that

(*) If f is a one-to-one feebly continuous and feebly open mapping of a regular
space X onto a totally nonmeager space Y, then X is a Baire space.

We shall show that this conjecture is true even without appealing to any addi-
tional separation axioms. For this purpose we prove the following general result.

THEOREM 1. Let f be a one-to-one feebly continuous and feebly open mapping
of a space X onto a space Y. If U is a nonempty open subset of X, then $\text{cov}^2(Y) \leq
\text{cov}(U)$.

PROOF. Suppose that U is a nonempty open subset of X, \mathcal{R} is a family of
nowhere dense subsets of U that covers U, and $|\mathcal{R}| = \text{cov}(U)$. Let us put $W = \text{int cl int } f(X - \text{cl } U)$. Then W is an open subset of Y that is disjoint with $\text{int } f(U)$, f
being one-to-one. We shall show that $\text{cov}(F) \leq \text{cov}(U)$, where $F = Y - W$.
The closed set F can be decomposed into two disjoint parts: $F_1 = \text{int } f(U)$ and
$F_2 = F - \text{int } f(U)$. Part F_2 is a closed subset of the closed set F. Let us check that
it is also nowhere dense in F. So let V be an open subset of Y such that $F_2 \cap V \neq \emptyset$.
Hence $V - W \neq \emptyset$ and, because V is open $G = V - \text{cl int } f(X - \text{cl } U) \neq \emptyset$.
Because f is feebly continuous, $\text{int } f^{-1}(G) \neq 0$. This set has to be disjoint with $X - \text{cl } U$;
otherwise $G \cap f(X - \text{cl } U) \neq \emptyset$ (f being feebly open), which is impossible. Hence
$\text{int } f^{-1}(G) \subset \text{cl } U$, and therefore $\text{int } f^{-1}(G) \cap U \neq \emptyset$. Because f is feebly open,
G \cap \text{int } f(U) \neq \emptyset. Since G \subset V, V \cap \text{int } f(U) \neq \emptyset which shows that \(F_2 \) is nowhere dense in \(F \).

To prove our theorem now, it is enough to show that int \(f(U) \) can be covered by cov(\(U \)) or a less nowhere dense subset of \(F \). We will have this if we show that for any \(E \in \mathcal{R} \), \(F_E = \text{int } f(U) \cap f(E) \) is a nowhere dense subset of \(F \). To see this we argue in the following way. The image of a nowhere dense subset of \(X \) under a one-to-one feebly open and feebly continuous mapping is again a nowhere dense subset of \(Y \). Nowhere dense subsets of an open set of a space are exactly those sets which are subsets of the open set and nowhere dense in the space. Therefore each \(F_E \) is a nowhere dense subset of int \(f(U) \), being the intersection of a nowhere dense set in the space \(Y \) with an open subset of the space \(Y \). Because int \(f(U) \) is contained in \(F \), those sets are also nowhere dense in \(F \). \(\square \)

As we know, cov(\(Y \)) > \(\omega \) means the same as \(Y \) being totally nonmeager, and cov(\(U \)) > \(\omega \) for each nonempty open subset of \(X \) means the same as \(X \) being a Baire space, so (*) follows immediately from Theorem 1.

Our next topic is to consider the cardinal \(\text{add}(X) \), the additivity of the category for the space \(X \). In order for \(\text{add}(X) \) to be defined we restrict ourselves to the case in which cov(\(X \)) is defined and cov(\(X \)) > \(\omega \). In such a case we put

\[
\text{add}(X) = \inf \left\{ |\mathcal{R}| : \mathcal{R} \text{ is a family of nowhere dense subsets of } X \right. \quad \text{and} \left. \bigcup \mathcal{R} \text{ is not first category in } X \right\}.
\]

There is an obvious inequality: \(\text{add}(X) \leq \text{cov}(X) \). Both cardinals \(\text{add}(X) \) and cov(\(X \)) have been intensively studied for \(X \) being a metric separable space (see, for example, [6, 7]). Many interesting and deep results have been obtained. One of the most celebrated results in this topic is the following inequality:

(***). If \(\kappa \) is a cardinal such that \(P(\kappa) \) holds and \(X \) is a separable, metric second category space, then \(\text{add}(X) > \kappa \).

Here \(P(\kappa) \) denotes the following combinatorial statement:

\(P(\kappa) \): If \(S \) is a family of infinite subsets of \(\omega \) such that \(|S| \leq \kappa \), and any finite subfamily of \(S \) has an infinite intersection, then there is an infinite subset \(A \) of \(\omega \) such that \(A - s \) is finite for each \(s \in S \).

The result (*** has been shown by D. Martin and R. Solovay [5]. We shall present a theorem that generalizes (***). Our generalization goes in two directions. First, it concerns a much wider class of spaces. Second, it uses a weaker assumption than \(P(\kappa) \)—namely, we shall use the following statement:

\(P(\kappa) \downarrow \). If \(\{T_\alpha : \alpha < \lambda \} \) is a family of infinite subsets of \(\omega \) such that \(\lambda \leq \kappa \) and \(\alpha < \beta < \lambda \) implies \(T_\beta - T_\alpha \) is finite, then there is an infinite subset \(A \) of \(\omega \) such that \(A - T_\alpha \) is finite for each \(\alpha < \lambda \).

Clearly, \(P(\kappa) \downarrow \) follows from \(P(\kappa) \). It is known [3] that \(P(\omega_1) \) follows from \(P(\omega_1) \downarrow \). However it is unknown whether \(P(\kappa) \) is equivalent to \(P(\kappa) \downarrow \), in general.

Theorem 2. If \(P(\kappa) \downarrow \) holds and \(X \) is a second category space containing a dense countable subspace of points with countable character, then \(\text{add}(X) > \kappa \).

To prove this theorem we will need two lemmas. The first of these is already known; it goes back to F. Rothberger [10] though the explicit proof can be found in [3].
LEMMA 1. Let \mathcal{F} be a family of functions from ω into ω such that $|\mathcal{F}| \leq \kappa$. If $P(k) \downarrow$ holds, then there is a function g from ω into ω such that the set $\{n \in \omega : g(n) \leq f(n)\}$ is finite for each $f \in \mathcal{F}$. □

LEMMA 2. Let X be a dense-in-itself T_1 space with a countable π-base, and let $\{D_\alpha : \alpha < \lambda\}$ be a family of countable dense subsets of X such that $D_\beta - D_\alpha$ is finite whenever $\alpha < \beta < \lambda$. If $\lambda \leq \kappa$ and $P(\kappa) \downarrow$ holds, then there is dense subset D of X such that $D - D_\alpha$ is finite for each $\alpha < \lambda$.

PROOF. Let \mathcal{P} be a countable π-base in X consisting of nonempty open sets. For each $U \in \mathcal{P}$ let us consider the family $\{U \cap D_0 \cap D_\alpha : \alpha < \lambda\}$. Each such family consists of infinite subsets of the countable set $U \cap D_0$. This holds because X is T_1 and the sets D_α are dense in X. We also have $U \cap D_0 \cap D_\beta = U \cap D_0 \cap D_\alpha$ is finite, whenever $\alpha < \beta < \lambda$. So we may apply $P(\kappa) \downarrow$, and we get that for any $U \in \mathcal{P}$ there is an infinite subset D_U of $U \cap D_0$ such that $D_U - D_\alpha$ is finite for each $\alpha < \lambda$. Enumerate D_U by $\{d(U, n) : n \in \omega\}$. Now for each $\alpha < \lambda$ define a function $f_\alpha : \mathcal{P} \to \omega$, setting $f_\alpha(U) = \min\{n : d(U, m) \in D_\alpha \text{ for each } m \geq n\}$. Since $D_U - D_\alpha$ is finite for each $U \in \mathcal{P}$, the function f_α is well defined. We may apply our Lemma 1 to the family $\{f_\alpha : \alpha < \lambda\}$, and we get the existence of a function g from \mathcal{P} into ω such that the set $\{U \in \mathcal{P} : g(U) \leq f_\alpha(U)\}$ is finite for each $\alpha < \lambda$. Let us put $D = \{d(U, n) : U \in \mathcal{P} \text{ and } g(U) \leq n\}$. Then D intersects each D_U on an infinite set and therefore D intersects each $U \in \mathcal{P}$ on an infinite set. Since \mathcal{P} is a π-base in X, D is dense in X. It remains to be shown that $D - D_\alpha$ is finite for each $\alpha < \lambda$. So fix α, $\alpha < \lambda$. Let us observe that if $d(U, n) \in D - D_\alpha$, then $g(U) \leq f_\alpha(U)$ and $d(U, n) \in D - D_\alpha$. Hence $D - D_\alpha \subset \bigcup\{D_U - D_\alpha : U \in \mathcal{P} \text{ and } g(U) \leq f_\alpha(U)\}$. Because the sets $D_U - D_\alpha$ are finite and the set $\{U \in \mathcal{P} : g(U) \leq f_\alpha(U)\}$ is finite as well, $D - D_\alpha$ is a finite set.

PROOF OF THEOREM 2. Assume, to the contrary, that there exists in the space X a family \mathcal{R} consisting of nowhere dense subsets of X such that $\bigcup \mathcal{R}$ is second category in X and yet $|\mathcal{R}| \leq \kappa$. Without loss of generality we may assume that X is dense-in-itself (otherwise apply the arguments below to the set $\text{int} \bigcup \mathcal{R}$). Let D be a countable dense subset of X consisting of points with countable character. For each $d \in D$ enumerate a countable base around d by $\{U(d, n) : n \in \omega\}$. We may also assume that $U(d, n) \subset U(d, m)$, whenever $m \leq n$. Of course, the family $\{U(d, n) : d \in D \text{ and } n \in \omega\}$ forms a countable π-base in X. Knowing this we will be able to find a dense subset C contained in D such that $C \cap \text{cl} F$ is finite for each $F \in \mathcal{R}$. For this purpose enumerate the family \mathcal{R}, say $\mathcal{R} = \{F_\alpha : \alpha < \lambda\}$. Since $|\mathcal{R}| \leq \kappa$, $\lambda \leq \kappa$. And now, we shall inductively define a family $\{D_\alpha : \alpha < \lambda\}$ satisfying the following conditions:

(i) $D_\alpha \subset D$, D_α is dense in X, and $D_\alpha \cap \text{cl} F_\alpha = \emptyset$ for each $\alpha < \lambda$;
(ii) if $\alpha < \beta < \lambda$, then $D_\beta - D_\alpha$ is finite.

Put $D_0 = D - \text{cl} F_0$. Assume $\gamma < \lambda$ and $\{D_\alpha : \alpha < \gamma\}$ has already been defined. If γ is a nonlimit ordinal, say $\gamma = \beta + 1$, then it is enough to put $D_\gamma = D_\beta - \text{cl} F_\gamma$. If γ is a limit ordinal, then let $\{\alpha_\xi : \xi < \text{cf}(\gamma)\}$ be a strongly increasing sequence of ordinals less than γ. Because $\text{cf}(\gamma) < \lambda \leq \kappa$ and $\text{cf}(\gamma)$ is a cardinal, we may apply our Lemma 2 to the family $\{D_{\alpha_\xi} : \xi < \text{cf}(\gamma)\}$. Hence we get a dense subset D_γ of X such that $D_\gamma - D_\alpha$ is finite for each $\xi < \text{cf}(\gamma)$. We shall show that $D_\gamma - D_\alpha$ is finite for each $\alpha < \gamma$. So fix α, $\alpha < \gamma$. There is ξ, $\xi < \text{cf}(\gamma)$, such that $\alpha < \alpha_\xi$.
Hence
\[\tilde{D}_\gamma - D_\alpha \subset \tilde{D}_\gamma - (D_\alpha \cap D_{\alpha'\epsilon}) \subset (\tilde{D}_\gamma - D_{\alpha'\epsilon}) \cup (D_{\alpha'\epsilon} - D_\alpha) \]
which is a finite set. Finally, if we put \(D_\gamma = (\tilde{D}_\gamma \cap D) - \operatorname{cl} F_\gamma \) we get the desired set to complete the induction step.

Now, if we have a family \(\{D_\alpha: \alpha < \lambda\} \) satisfying conditions (i) and (ii), we shall again apply our Lemma 2 to this family (since \(\lambda \leq \kappa \)), and we get a dense subset \(C \) of \(X \) such that \(C - D_\alpha \) is finite for each \(\alpha < \lambda \). We may assume that \(C \) is a subset of \(D \) (throwing out finitely many points if needed); the properties \(C - D_\alpha \) is finite and \(D_\alpha \cap \cl F_\alpha = \emptyset \) give us that \(C \cap \cl F_\alpha \) is finite, so \(C \cap \cl F \) is finite for each \(F \in \mathcal{R} \).

Enumerate the points of \(C \) by \(\{c_n: n \in \omega\} \) and consider the families \(\mathcal{R}_n = \{F \in \mathcal{R}: C \cap \cl F \subset \{c_0, \ldots, c_n\}\} \). Each member of \(\mathcal{R} \) falls into one of the families \(\mathcal{R}_n \). Hence one of them, say \(\mathcal{R}_m \), has the union of its members being second category. Let us throw out \(m+1 \) first points from the set \(C \). Then we obtain a dense countable set \(B \) such that \(B \cap \cl F = \emptyset \) for each \(F \in \mathcal{R}_m \). Now for each \(F \in \mathcal{R}_m \) define a function \(f_F: B \to \omega \) setting \(f_F(b) = \min\{n: U(b, n) \cap \cl F = \emptyset\} \) (recall that \(B \) is a subset of \(D \) and for each \(d \in D \) we have assigned a local base, \(\{U(d, n): n \in \omega\} \)).

Since \(b \notin \cl F \) for each \(F \in \mathcal{R}_m \), the function \(f_F \) is well defined. We may apply our Lemma 1 to the family \(\{f_F: F \in \mathcal{R}_m\} \), and we get the existence of a function \(g: B \to \omega \) such that the set \(\{b \in B: f(b) \leq f_F(b)\} \) is finite for each \(F \in \mathcal{R}_m \). For each finite subset \(S \) of the set \(B \) let us put \(E_S = X - \bigcup\{U(b, g(b)): b \in B - S\} \). The number of the sets \(E_S \) is countable, since \(B \) is a countable set. So we will come to a contradiction if we show that \(\bigcup \mathcal{R}_m \subset \bigcup \{E_S: \text{\(S \) is a finite subset of \(B \)}\} \) and that each set \(E_S \) is nowhere dense in \(X \).

To see that \(\bigcup \mathcal{R}_m \subset \bigcup \{E_S: \text{\(S \) is a finite subset of \(B \)}\} \), let us observe that \(F \subset E_S \), whenever \(S = \{b \in B: g(b) \leq f_F(b)\} \).

To see that \(E_S \) is nowhere dense, take an arbitrary nonempty open subset \(V \) of \(X \). The \(V \cap B \) is infinite and therefore there is a point \(b_0 \) belonging to \(V \cap B - S \). Consequently,
\[b_0 \in V \cap U(b_0, g(b_0)) \subset V \cap \bigcup\{U(b, g(b)): b \in B - S\}. \]

Our final topic is to consider the cardinal \(u(X) \). It is defined (if possible) in the following way:
\[u(X) = \inf\{|Y|: Y \text{ is a second category subset of } X\}. \]

There are obvious inequalities between \(\text{add}(X) \) and both cardinals \(\text{cov}(X) \) and \(u(X) \) in the case in which \(\text{cov}(X) \) is defined, and \(X > \omega \), namely \(\text{add}(X) \leq u(X) \) and \(\text{add}(X) \leq \text{cov}(X) \). Within ZFC one cannot prove the equalities \(\text{add}(X) = u(X) \) or \(u(X) = \text{cov}(X) \), even if \(X \) is the space of reals [6].

\(M(\kappa) \). If \(\mathcal{F} \) is a family of functions from \(\omega \) into \(\omega \) such that \(|\mathcal{F}| \leq \kappa \), then there is a function \(g \) from \(\omega \) into \(\omega \) such that the set \(\{n \in \omega: g(n) = f(n)\} \) is finite for each \(f \in \mathcal{F} \).

Theorem 3. If \(M(\kappa) \) holds and \(X \) is a dense-in-itself second category Hausdorff space with a countable \(\pi \)-base, then \(u(X) > \kappa \).

Proof. Assume, to the contrary, that the space \(X \) contains a second category subset \(Y \) such that \(|Y| \leq \kappa \). Let \(\mathcal{P} \) be a countable \(\pi \)-base in \(X \). Because \(X \) is a
dense-in-itself Hausdorff space, each nonempty open subset of X contains infinitely many disjoint nonempty open subsets. For any $u \in \mathcal{P}$, $u \neq \emptyset$, let $\{u(n): n \in \omega\}$ be a disjoint family of nonempty open subsets of the set u. Now, for any $y \in Y$ define a function $f_y: \mathcal{P} - \{\emptyset\} \to \omega$ setting $f_y(u) = n$ if $y \in u(n)$ and $f_y(u) = 0$ if $y \notin \bigcup\{u(n): n \in \omega\}$. Because $|Y| \leq \kappa$ and $M(\kappa)$ holds, there is a function g from $\mathcal{P} - \{\emptyset\}$ into ω such that the set $\{u \in \mathcal{P} - \{\emptyset\}: g(u) = f_y(u)\}$ is finite for each $y \in Y$. For each finite subset s of the set \mathcal{P} let us put $E_s = X - \bigcup\{u(g(u)): u \in \mathcal{P} - s\}$. The number of the sets E_s is countable. So, we will come to a contradiction if we show that $Y \subseteq \bigcup\{E_s: s$ is a finite subset of $\mathcal{P}\}$ and that each set E_s is nowhere dense. To see the first observe that if $y \in Y$, then $y \in E_s$, where $s = \{u \in \mathcal{P} - \{\emptyset\}: g(u) = f_y(u)\}$. To see that each E_s is nowhere dense, fix s and take an arbitrary nonempty open subset V of X. Because X is dense in itself, the set of all members of \mathcal{P} contained in V is infinite, and therefore there is one in $\mathcal{P} - (s \cup \{\emptyset\})$. Hence $V \cap \bigcup\{u(g(u)): u \in \mathcal{P} - s\} \neq \emptyset$.

In [6, Theorem 1.3] some analogous results have been obtained for metric separable spaces.

References