Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multicoherence of spaces of the form $ X/M$


Author: Alejandro Illanes M.
Journal: Proc. Amer. Math. Soc. 101 (1987), 190-194
MSC: Primary 54F55
DOI: https://doi.org/10.1090/S0002-9939-1987-0897093-8
MathSciNet review: 897093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a connected, locally connected, normal $ {T_1}$-space and let $ M$ be a closed connected, locally connected subspace of $ X$. Suppose that $ X/M$ denotes the space obtained by identifying $ M$ in a single point, and that, for a connected space $ Y$, $ \imath (Y)$ denotes the multicoherence degree of $ Y$. In this paper, we prove that if $ M$ is unicoherent, then $ \imath (X) = \imath (X/M)$. As an application of this result we prove that if $ X = A \cup B$, where $ A,B$ are closed subsets of $ X$ and $ A \cap B$ is connected, locally connected and unicoherent, then $ \imath (X) = \imath (A) + \imath (B)$. Also, we prove that if $ X/M$ is unicoherent, then $ \imath (X) \leqslant \imath (M)$.


References [Enhancements On Off] (What's this?)

  • [1] S. T. Czuba, Some properties of unicoherence, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 27(1979), 711-716. MR 600725 (82d:54039)
  • [2] R. F. Dickman, Jr., Unicoherence and related properties, Duke Math. J. 34 (1967), 343-352. MR 0212767 (35:3632)
  • [3] S. Eilenberg, Transformations continues en circonference et la topologie du plan, Fund. Math. 26 (1936), 61-112.
  • [4] -, Sur les espaces multicohérents. I, Fund. Math. 27 (1936), 153-190.
  • [5] -, Sur la multicohérence ces surfaces closes, C. R. Acad. Sci. Warsaw 30 (1937), 109-111.
  • [6] T. Ganea, Multicohärenz topologischer gruppen, Math. Nachr. 7 (1952), 323-334. MR 0049208 (14:136d)
  • [7] A. Illanes M., Multicoherence of spaces obtained by identifying a finite number of points; multicoherence of one-point compactifications (preprint).
  • [8] S. Mardešić, Equivalence of singular and Cech homology for ANR's. Application to unicoherence, Fund. Math. 46 (1958), 29-45. MR 0099027 (20:5472)
  • [9] W. S. Massey, Algebraic topology: An introduction, Graduate Texts in Math., no. 56, Springer-Verlag, New York, Heildelberg and Berlin, 1967. MR 0211390 (35:2271)
  • [10] A. H. Stone, Incidence relations in multicoherent spaces. II, Canad. J. Math. 2 (1950), 461-480. MR 0038065 (12:349b)
  • [11] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 0007095 (4:86b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F55

Retrieve articles in all journals with MSC: 54F55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0897093-8
Keywords: Multicoherence, unicoherence, identifications
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society