PRIMES DIVIDING CHARACTER DEGREES
AND CHARACTER ORBIT SIZES

DAVID GLUCK

Abstract. We consider an abelian group A which acts faithfully and coprimely on a solvable group G. We show that some A-orbit on $\text{Irr}(G)$ must have cardinality divisible by almost half the primes in $\pi(A)$. As a corollary, we improve a recent result of I. M. Isaacs concerning the maximum number of primes dividing any one character degree of a solvable group.

A recent result of I. M. Isaacs [5, Corollary 4.3] relates the maximum number of primes dividing any one irreducible character degree of a solvable group G to the number of primes dividing all the character degrees of G taken together. Here we considerably strengthen the bound in [5, Corollary 4.3] by proving a result on character orbit sizes in coprime actions.

We consider an abelian group A which acts faithfully and coprimely on a solvable group G. We show that some A-orbit on $\text{Irr}(G)$ must have cardinality divisible by almost half the primes in $\pi(A)$. Our approach roughly parallels that of [6]. This paper and [5] contain new applications of the results and methods of [6, 7, 1, 2].

I would like to thank I. M. Isaacs for bringing this problem to my attention.

Our notation is largely standard. If a group G acts on a set Ω and $\omega \in \Omega$, we denote by $\text{Orb}_G(\omega)$ the G-orbit of ω. If $G < H$ and H also acts on Ω, we say that $h \in H$ moves $\text{Orb}_G(\omega)$ if $\omega^h \not\in \text{Orb}_G(\omega)$. All groups considered in this paper are finite and solvable.

We now state our main results.

Theorem 1. Let A act faithfully on G with $(|A|, |G|) = 1$ and A abelian. Then $|\pi(A)| \leq 2|\pi(\text{Orb}_A(\chi))| + 8$ for some $\chi \in \text{Irr}(G)$.

Corollary 1. Let G be solvable. Let $s = \max\{|\pi(\chi(1))|: \chi \in \text{Irr}(G)\}$ and let $\rho = |\pi(\Pi_{\chi \in \text{Irr}(G)}\chi(1))|$. Then $\rho \leq s^2 + 10s$.

Proof. Using Theorem 1 above, we get a stronger version of [5, Theorem 4.1] in which part (a) is replaced by $|\rho(G) - \rho(N) - \sigma| \leq 2(s - |\sigma|) + 8$. This leads to a stronger version of [5, Corollary 4.3] in which $|\rho(G)| \leq s + \sum_{i=0}^{s-1}2(s - i) + 8 = s^2 + 10s$. Since $|\rho(G)|$ in [5] is called ρ in our paper, this completes the proof.
The next proposition shows that the bound in Theorem 1 is close to best possible.

Proposition 1. Let m be a positive integer. There exist groups A and G satisfying the hypotheses of Theorem 1 with $|\pi(A)| = 2m$ and $\pi(\text{Orb}_A(\chi)) \leq m$ for all $\chi \in \text{Irr}(G)$.

Proof. For $1 \leq i \leq m$, choose odd primes p_i and q_i subject to the following conditions. Let e_i and f_i denote the order of 2 mod p_i and q_i respectively.

1. \(\min(p_i, q_i) > 2^{p_i-1}q_i - 1\) for $i > 1$,
2. \(q_i = 2^{e_i} \cdot \prod \text{odd primes} \leq q_i\) for $i > 1$,
3. \(f_i < e_i\) for all i.

For each i set $n_i = f_i p_i$. Clearly $2^{f_i} - 1 \equiv 0 \pmod{q_i}$. Since

\[(2^{n_i} - 1)/(2^{f_i} - 1) \equiv 1 + 2^{f_i} + \cdots + 2^{(p_i-1)f_i}, \]

it follows that $(2^{n_i} - 1)/(2^{f_i} - 1) \equiv p_i \not\equiv 0 \pmod{q_i}$. By (3) above, $2^{n_i} - 1 = 2^{f_i}p_i - 1 \equiv 2^{f_i} - 1 \not\equiv 0 \pmod{p_i}$.

Let V_i be elementary abelian of order 2^{n_i}. Let C_i be cyclic of order $2^{n_i} - 1$. Let P_i be cyclic of order p_i, and let P_i act on $C_i \cong \text{GF}(2^{n_i} - 1)^\times$ as the subgroup of order p_i in $\text{Gal}(\text{GF}(2^{n_i}))/\text{GF}(2))$. Let $H_i = (P_i, C_i) V_i$ be the corresponding subgroup of the affine semilinear group over $\text{GF}(2^{n_i})$. Let Q_i be the Sylow q_i-subgroup of C_i. The preceding paragraph implies that $[P_i, Q_i] = 1$ and $Q_i > 1$. Let $C_i = Q_i \times R_i$. Let $G_i = R_i V_i$ and $A_i = P_i Q_i$. Then A_i acts faithfully on G_i and the preceding paragraph shows that $(|A_i|, |G_i|) = 1$.

Let $\chi \in \text{Irr}(H_i)$ and let λ be an irreducible constituent of χV_i. If $\lambda = 1$, then $\chi(1)$ divides p_i. If $\lambda \neq 1$, then $|H_i(\lambda)| = p_i$, and every character in $\text{Irr}(H_i(\lambda)|\lambda)\lambda)$ has degree 1 (see [4, 6.17 and 6.20]). Hence $\chi(1) = |Q_i| |R_i|$. In either case, at most one prime in $\pi(A_i)$ divides $\chi(1)$.

Let $\psi \in \text{Irr}(G_i)$. Since $G_i < H_i$, $|\text{Orb}_A(\psi)|$ divides an irreducible character degree of H_i. Hence $|\pi(\text{Orb}_A(\psi)))| \leq 1$.

Now let $G = G_1 \times \cdots \times G_m$ and let $A = A_1 \times \cdots \times A_m$ act componentwise on G. Clearly A acts faithfully on G. To show that $(|A|, |G|) = 1$, it suffices, by induction, to show that $(|A_i|, |G_i|) = (|A_i|, |G_m|) = 1$ for $i < m$. We already know that $(|A_m|, |G_m|) = 1$. Suppose $i < m$. If $(|A_m|, |G_i|) > 1$, then $(|A_m|, |C_i|) = (|A_m|, 2^{p_i} - 1 > 1$. Since f_i divides $q_i - 1$, this contradicts condition (1) in the first paragraph. If $(|A_i|, |G_m|) > 1$ for $i < m$, then $(|A_i|, |C_m|) = (|A_i|, 2^{p_i m} - 1 > 1$. Then ord$_{(2)}|p_i f_m$ where $r = p_i$ or $r = q_i$. Since ord$_{(2)}$ divides $r - 1 < p_m$, we have ord$_{(2)}|f_m$ and so ord$_{(2)}|(q_m - 1)$, contrary to condition (2) in the first paragraph. Hence A and G satisfy the hypothesis of Theorem 1.

Let $\psi = \psi_1 \times \cdots \times \psi_m$ be an arbitrary character in $\text{Irr}(G)$. As above, we may choose $S_i \in \{P_i, Q_i\}$ so that S_i fixes ψ_i. Then $S_1 \times \cdots \times S_m$ fixes ψ, so $|\pi(\text{Orb}_A(\psi)))| \leq m$. This completes the proof.

We proceed to prove Theorem 1. We will use the proof of [6, Theorem 3.3] as a rough guide in the proof of Proposition 3 below.

Lemma 1. Let A act on G with A abelian and $(|A|, |G|) = 1$. Let A_p denote the p-Sylow subgroup of A. Let N and M be A-invariant normal subgroups of G, with $[A_p, G] \leq M$ and $N \leq M$. Let λ be an irreducible character of N and suppose A_p
moves \(\text{Orb}_M(\lambda) \). Then \(A_p \) moves \(\text{Orb}_G(\lambda) \). Similarly, if \(v \in N \) and \(A_p \) moves \(\text{Orb}_M(v) \), then \(A_p \) moves \(\text{Orb}_G(v) \).

Proof. Suppose \(A_p \) stabilizes \(\text{Orb}_G(\lambda) \). Then the semidirect product \(A_pG \) acts on \(\text{Orb}_G(\lambda) \) with \(G \) acting transitively. By Glauberman's Lemma [4, Lemma 13.8], \(A_p \) fixes some \(\psi \in \text{Orb}_G(\lambda) \). Then \(A_p^g \) fixes \(\lambda \) for some \(g \in G \). Since \(G = C_G(A_p)|A_p, G| = C_G(A_p)M \), we may assume that \(g \in M \). Hence \(A_p \) stabilizes \(\text{Orb}_M(\lambda) \).

The second assertion is proved similarly.

Lemma 2. Let \(G \neq 1 \) be solvable with every normal abelian subgroup cyclic. Let \(p_1, \ldots, p_n \) be the distinct prime divisors of \(|F(G)| \) and let \(Z < Z(F(G)) \) with \(|Z| = p_1 \cdots p_n \). Let \(D = C_G(Z) \). Then there exist \(E, T < G \) with

(i) \(ET = F(G) \) and \(E \cap T = Z \).

(ii) Each Sylow subgroup of \(T \) is cyclic, dihedral, semidihedral or quaternion.

(iii) \(T \) has a cyclic subgroup \(U \) with \(|T : U| \leq 2 \) and \(U < G \).

(iv) Each Sylow subgroup of \(E \) is cyclic of prime order or extraspecial of prime exponent or exponent 4.

(v) \(G \) is nilpotent if and only if \(G = T \).

(vi) \(T = C_G(E) \) and \(F(G) = C_D(E/Z) \).

(vii) Each Sylow subgroup of \(E/Z \) is elementary abelian and is a completely reducible \(D/F(G) \)-module.

Proof. This is [7, Corollary 2.4].

Lemma 3. Let \(G, E, U, \) and \(Z \) be as in Lemma 2. Let \(V \) be a faithful \(F[EU] \)-module for a finite field \(F \). Let \(W \neq 0 \) be an irreducible \(U \)-submodule of \(V \) and let \(e = |E : Z|^{1/2} \). Then \(\dim V = me \dim W \) for an integer \(m \).

Proof. This is [7, Lemma 2.5].

Lemma 4. Let \(E \triangleleft H \) with \([H : E] = p \) and \(p \nmid |E| \). Let \(Z = Z(E), \) \(P \in \text{Syl}_p(H), \) and let \(V \) be a finite-dimensional \(F[H] \)-module for a field \(F \). Assume that \(E/Z \) is an abelian \(q \)-group for a prime \(q, P \not\in C_H(E), \) and \(V_E \) is a faithful, completely reducible and homogeneous module. Then \(\dim C_V(P) \leq (\dim V)/2 \) if \(p \) is odd.

Proof. This is part of [6, Lemma 1.7].

Lemma 5. Let \(V \neq 0 \) be a faithful and completely reducible \(F[G] \)-module for a field \(F \) and a solvable group \(G \). Then \(|G| \leq |V|^{9/4} \).

Proof. This is a slightly weaker version of [7, Theorem 3.1].

Proposition 2. Let \(A \) act on \(G \) with \((|A|, |G|) = 1 \) and \(A \) cyclic of squarefree order. Suppose that \([A_p, G/F(G)] \) is a nonidentity abelian group for all \(p \) in \(\pi(A) \). Then \(A \) has a faithful orbit on \(\text{Irr}(G) \).

Proof. Let \(H = G/F(G) \). Then \([A, H] = \prod_{p \in \pi(A)} [A_p, H] \) is contained in \(F(H) \). Let \(W = [A, H]/\Phi([A, H]) \), so that \(W \) is a direct product of elementary abelian \(q \)-groups for primes \(q \) dividing \(|H| \). Write \(W = W_1 \times \cdots \times W_k \), each \(W_i \) an irreducible \(A \)-module. For \(1 \leq i \leq k \), let \(1 \neq \lambda_i \in \text{Irr}(W_i) \). Let \(\lambda = \lambda_1 \times \cdots \times \lambda_k \). Since...
222

DAVID GLUCK

(|A|, |H|) = 1, A acts faithfully on [A, H] and hence on W. For each \(p \in \pi(A/C_\lambda(W_i)) \), thus \(\lambda_i \) is moved by \(A_p \) for every \(p \in \pi(A/C_\lambda(W_i)) \). Thus \(\lambda \) lies in a faithful \(A \)-orbit on \(\text{Irr}(W) \). We now apply Lemma 1 with \(A, H, [A, H], [A, H] \) in place of \(A, G, M, N \) and conclude that \(\text{Orb}_G(\lambda) \) is moved by \(A_p \) for every \(p \in \pi(A) \). Let \(\chi \in \text{Irr}(H|\lambda) \).

Then \(\chi \) lies in a faithful \(A \)-orbit on \(\text{Irr}(H) \subseteq \text{Irr}(G) \).

Proposition 3. Let \(\pi_0 = \{2, 3, 5, 7, 11, 13, 17, 31\} \). Let \(A \) be cyclic of squarefree \(\pi_0 \)-order. Let \(A \) act on \(G \) with \((|A|, |G|) = 1 \) and \([A_p, G] \) nonabelian for all \(p \in \pi(A) \). Let \(V \) be an abelian group which is a direct product of completely reducible \(AG \)-modules over various finite fields. Suppose \((|A|, |V|) = 1 \) and \(AG \) acts faithfully on \(V \). Then there exists \(v \in V \) such that \(\text{Orb}_G(v) \) is moved by every \(A_p \).

Proof. We proceed by induction on \(|G| + |V| \). Set \(\pi(A) = \pi \).

First suppose \(V \) is not an irreducible \(AG \)-module. Write \(V = V_1 \times \cdots \times V_k \), with each \(V_i \) an irreducible \(AG \)-module. Let \(G_i = G/C_G(V_i) \) for \(1 \leq i \leq k \). Let \(\pi_i = \{ p \in \pi : [A_p, G_i] \text{ is nonabelian} \} \). For each \(p \in \pi \), \([A_p, G] \) is isomorphic to a subgroup of \([A_p, G_1] \times \cdots \times [A_p, G_k] \). Hence \([A_p, G_i] \) is nonabelian for some \(i \), and so \(\pi = \pi_1 \cup \cdots \cup \pi_k \). We apply the induction hypothesis to \(G_i \) with \(\pi_p \) in place of \(A, G, V, V \). We obtain \(v_i \in V_i \) such that \(\text{Orb}_{G_i}(v_i) \) is moved by \(A_p \) for all \(p \in \pi \). Thus \(\text{Orb}_G(v_1, \ldots, v_k) \) is moved by \(A_p \) for all \(p \in \pi \).

We now assume that \(V \) is an irreducible \(AG \)-module. We may apply Lemma 1 with \(A, G, V, [A, G]V, V \) in place of \(A, G, M, N \) and conclude that it suffices to find \(v \in V \) such that \(\text{Orb}_{[A, G]}(v) \) is moved by \(A_p \) for all \(p \in \pi \). By the inductive hypothesis we may then assume that \(G = [A, G] \). It follows that \(O^{\pi}(AG) = AG \), since otherwise a proper factor group of \(G \) would be centralized by \(A \), contrary to \(G = [A, G] \).

Suppose that \(V \) is imprimitive. Let \(V = V_1 \oplus \cdots \oplus V_t \) be an imprimitivity decomposition for the action of \(AG \) on \(V \). We may partition \(\{1, \ldots, t\} \) into blocks \(B_j \), \(1 \leq j \leq s \), and set \(U_j = \Sigma_{i \in B_j} V_i \), so that \(AG \) permutes the set \(\{U_1, \ldots, U_s\} \) primitively. Let \(C \) be the kernel of the permutation action of \(AG \) on the \(U_j \). Since \(AG = O^\pi(AG) \), we have \(A \not\subseteq C \). By [1, Theorem 1] we may choose \(S \leq \{1, 2, \ldots, s\} \) so that the stabilizer in \(AG \) of \(\{U_j \mid j \in S\} \) is \(C \). Let \(U = \Sigma_{j \in S} U_j \). Let \(\pi_1 = \{ p \in \pi : [A_p, G \cap C] \subseteq \} \). Let \(A_1 = \prod_{p \in \pi_1} A_p \) so that \(C = A_1(C \cap G) \). By [1, Theorem 1] the irreducible constituents of \(V_{C \cap G} \) are \(AG \)-conjugate. Thus if \(K_j \) denotes the kernel of \(C \) on \(U_j \), then \(\cap_{x \in AG} K_j^x = 1 \) for each \(j \in S \). Let \(p \in \pi_1 \). Since all \(p \)-Sylow subgroups of \(C \) are conjugate under \(G \cap C \), it follows that \([A_p, G \cap C] \cap G \cap C \) and \([A_p, G \cap C]' \cap G \cap C \). The last two sentences imply that \([A_p, G \cap C]' \not\subseteq K_j \) for any \(j \in S \). Hence \(A_p \not\subseteq K_j \) for \(p \in \pi_1 \) and \(j \in S \). Since \(K_j \not\subseteq \), it follows that \(K_j \not\subseteq G \cap C \) and \([A_p, (G \cap C)/K_j] \) is nonabelian for \(p \in \pi_1 \) and \(j \in S \).

For \(j \in S \), we may now apply the inductive hypothesis with \(A_1, C \cap G/K_j, U_j \) in place of \(A, G, V \). We obtain \(u_j \in U_j \) such that \(\text{Orb}_{C \cap G}(u_j) \) is moved by \(A_p \) for all \(p \in \pi_1 \). Let \(u = \Sigma_{j \in S} u_j \). If \(p \in \pi_1 \) and \(p \in \text{Syl}_p(AG) \), then the choice of \(S \) insures that \(P \) does not centralize \(u \). If \(P \in \text{Syl}_p(AG) \) and \(p \in \pi_1 \), then the
PRIMES DIVIDING CHARACTER DEGREES

223

The definition of \(u_j \) implies that \(P \) does not centralize \(u \). For every \(p \in \pi \), the last two sentences show that \(A_p \) fixes no element in \(\text{Orb}_C(u) \). If \(A_p \) stabilized \(\text{Orb}_C(u) \), then Glauberman’s Lemma applied to the action of \(A_p G \) on \(\text{Orb}_C(u) \) would yield a contradiction. Hence \(A_p \) moves \(\text{Orb}_C(u) \) as desired.

We may now assume that \(V \) is a primitive \(AG \)-module. If \(F(AG) \not\subseteq G \), then some \(A_p \leq F(AG) \), and so \(A_p \not\leq AG \), contrary to \([A_p, G] \neq 1\). Hence \(F(AG) \subseteq G \), and so \(F(AG) = F(G) \). Set \(F(AG) = F \). Now \(AG \) can play the role of “\(G \)” in Lemma 2. Let \(T, U \leq AG \) be as in the conclusion of Lemma 2. Suppose \(T \neq U \). Then every \(2' \)-element of \(AG \) centralizes \(O_2(T) \), so \(AG/CAG(O_2(T)) \) is a nonidentity \(2 \)-group, contradicting \(O^2(AG) = AG \). Thus \(T = U \) is cyclic. Let \(Z, D, \) and \(E \) be as in Lemma 2, so that \(F = C_p(E/Z) \) and each Sylow subgroup of \(E/Z \) is a completely reducible \(D/F \)-module.

Fix \(p \in \pi \). Since \(AG/D \) is abelian, \([A_p, G] \leq D \cap G \). Thus \([A_p, G] = [A_p, A_p, G] = [A_p, D \cap G] \). Suppose \([A_p, E/Z] = 1\). Since \(D \) and \(C_{AG}(E/Z) \) are normal in \(AG \), we have \([A_p, G] = [A_p, D \cap G] \leq C_p(E/Z) = F \). Hence

\[
[A_p, G] = [A_p, A_p, G] = [A_p, F] = [A_p, E] [A_p, T] \leq ZT = T,
\]

contary to the hypotheses of Proposition 3. Hence \([A_p, E/Z] \neq 1\). Let \(E_1 \) be a Sylow subgroup of \(E \) with \([A_p, E_1 \cap E_1 \cap Z] \neq 1\). We apply Lemma 4 to \(A_p E_1, E_1, A_p, V \) in place of \(H, E, P, V \). We conclude that \(|C_{E}(A_p)| \leq |V|^{1/2}\).

Let \(Y \) be an irreducible \(F \)-submodule of \(V \). By Lemma 3, \(|Y| = |W|^{me} \), where \(e^2 = |E:Z| \) and \(m \) is a positive integer. Moreover \(W \) is a faithful irreducible \(T \)-submodule of \(Y \), so that \(|T| \) divides \(|W| - 1\).

Now \(|G \cap D| = |G \cap D:F| |F| \). By Lemmas 2 and 5, and an obvious subdirect product argument, \(|D:F| \leq |E:Z|^{1/4} = e^{1/2} \). We have \(|G \cap D| \leq e^{1/2} |e/2| |T| = |T|^e^{1/2} \). Since \([A_p, G] = [A_p, G \cap D] \), we have \(O^p(AG) \leq A_p(G \cap D) \), so \(|Syl_p(AG)| \leq |G \cap D| \leq e^{1/2} |T| \). Hence

\[
\sum_{p \in Syl_p(AG)} |C_{E}(p)| \leq |T| |T|^{e^{1/2}} |C_{E}(A_p)| \leq |T| |T|^{e^{1/2}} |V|^{1/2}.
\]

We will show that the following inequality holds:

\[
(*) \sum_{p \in Syl_p(AG)} |C_{E}(p)| \leq p^{-2} |V|.
\]

Suppose (*) is false, so that \(p^2 |T| |T|^{e^{1/2}} \geq |V|^{1/2} \geq |W|^{e/2} \).

If \([A_p, Z] \neq 1\), then \(p \) divides \(|\text{Aut } Z|\) and so \(p |(s - 1) \) for some prime divisor \(s \) of \(|Z|\). Since \(Z = T \cap E \), we have \(s |e \) and \(s \leq |T| < |W| \). Since \(p > 17 \) and \(p |(s - 1) \), it follows that \(s \geq 47 \). Since \(p < s \leq |T| < |W| \), we have \(|W|^{3e^{1/2}} > |W|^{e/2} \), so that \(e^{1/2} > |W|^{(e/2)^{-3}} > 48^{(e/2)^{-3}} \). Hence \(e < 20 \), contrary to \(s \geq 47 \) and \(s \leq e \).

Thus we assume \([A_p, Z] = 1\). Let \(e = \prod_i q_i^{n_i} \), for distinct primes \(q_i \). Since \([A_p, E/Z] \neq 1 \) and \(A_p \not\leq D \), \(p \) divides \(|\text{Sp}(2n_i, q_i)|\) for some \(i \). Hence \(p | q_i^{m_i} - 1 \) for some \(m_i \) with \(1 \leq m_i \leq n_i \). Thus \(p | q_i^{m_i} + 1 \) or \(p | q_i^{m_i} - 1 \), where \(q_i^{m_i} | e \). It follows that \(p \leq e + 1 \). Since \(|T| < |W| \), we have \((e + 1)^{e^{1/2}} > |W|^{(e/2)^{-1}} \). Since \(|W| \geq 3 \), we have \(e < 70 \).
If \(m_i > 1 \), our hypothesis that \(p \not\in \pi_0 \) implies that \(q_i^{m_i} > 70 \). Hence \(e > 70 \), a contradiction. Thus \(m_i = 1 \) and \(p \not\in \pi_0 \) implies that \(q_i \geq 37 \). Since \(q_i \) divides \(|T| \) and \(|T| \) divides \(|W| - 1 \) and \(|W| \) is a prime power, we must have \(|W| \geq 83 \). Hence \((e + 1)^2 e^{13/2} > 83^{(e/2)-1}\). As above, this implies that \(e < 20 \), contrary to \(q_i | e \) and \(q_i \geq 37 \).

We conclude that \((*)\) holds for each \(p \in \pi \). Since \(\Sigma p \in \pi p^{-2} \) is less than 1, it follows that there exists \(v \in V \) such that \(v \) is centralized by no \(p \)-Sylow subgroup of \(AG \) for any \(p \in \pi \). Then no \(A_p \) fixes any element in \(\text{Orb}_G(v) \). By Glauberman’s Lemma, each \(A_p \) moves \(\text{Orb}_G(v) \).

Proposition 4. Let \(A \) be cyclic of squarefree \(\pi_0 \)-order. Let \(N \) be an \(A \)-invariant normal abelian subgroup of \(G \) which is a direct product of completely reducible \(AG \)-modules. Suppose \(N = C_{AG}(N) \). For each \(p \in \pi(A) \), suppose that \([A_p, G/N]\) is either nonabelian or trivial. Then \(A \) has a faithful orbit on \(\text{Irr}(G) \).

Proof. Let \(V = \text{Irr}(N) \), \(\pi = \pi(A) \), \(\pi_1 = \{ p \in \pi : [A_p, G/N] \text{ is nonabelian} \} \), and \(\pi_2 = \pi - \pi_1 \). Let \(A_1 \) be the Hall \(\pi_1 \)-subgroup of \(A \).

Then \(A_1 \), \(G/N \), and \(N \) satisfy the hypotheses of Proposition 3. Hence we may choose \(v \in V \) so that \(\text{Orb}_G(v) \) is moved by \(A_p \) for all \(p \in \pi_1 \).

Write \(V = V_1 \times \cdots \times V_k \), a direct product of irreducible \(AG \)-modules. We may assume that each component \(V_i \) of \(v \) is not 1. For each \(p \in \pi_2 \), we may choose \(i \in \{1, \ldots, k\} \) such that \(V_i \) is not centralized by \(A_p \). Since \([A_p, G] \leq N = C_{AG}(V)\), the centralizer in \(V_i \) of \(A_p \) is an \(AG \)-submodule of \(V_i \), and hence is trivial. Thus \(A_p \) moves \(V_i \), and so \(A_p \) moves \(v \).

We think of \(v \) as a linear character \(\lambda \) of \(N \). Then \(\text{Orb}_N(\lambda) = \{\lambda\} \) is not \(A_p \)-invariant for any \(p \in \pi_2 \). By Lemma 1 with \(A, G, M, N \) in place of \(\pi, G, M, N \), we conclude that \(\text{Orb}_G(\lambda) \) is moved by \(A_p \) for all \(p \in \pi_2 \). By the second paragraph, \(\text{Orb}_G(\lambda) \) is moved by \(A_p \) for all \(p \in \pi \). Hence if \(\chi \in \text{Irr}(G|\lambda) \), then \(\chi \) lies in a faithful \(A \)-orbit.

Proof of Theorem 1. We may assume \(A \) is cyclic of squarefree order. The hypotheses of Theorem 1 imply that \(F(AG) = F(G) \). Since \(G = [A_p, G]C_{AG}(A_p) \) for each \(p \in \pi(A) \), it follows that \(A \) acts faithfully on \(G/F(AG) \). Thus we may assume that \(\Phi(AG) = 1 \) and hence that \(F(G) = F(AG) \) is a direct product of completely reducible \(AG \)-modules (see [3, III, Satz 4.5]).

Partition \(\pi(A) = \pi \) as follows. Let \(\pi_1 = \pi \cap \pi_0 \), \(\pi_2 = \{ p \in \pi : p \not\in \pi_0 \} \), and \([A_p, G/F(G)] \) is abelian and nontrivial}, \(\pi_3 = \pi - \pi_1 - \pi_2 \), and \(\pi_4 \) be the larger of \(\pi_2 \) and \(\pi_3 \). Let \(A_4 \) be the Hall \(\pi_4 \)-subgroup of \(A \). By Proposition 3 or Proposition 4 applied to \(A_4 \) and \(G \), we may conclude that \(A_4 \) has a faithful orbit on \(\text{Irr}(G) \). Since \(|\pi(A)| \leq 2|\pi(A_4)| + 8\), this completes the proof.

References

Department of Mathematics, Wayne State University, Detroit, Michigan 48202