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REDUCTION EXPONENT AND DEGREE BOUND
FOR THE DEFINING EQUATIONS OF GRADED RINGS

NGO VIET TRUNG

ABSTRACT. The paper gives upper degree bounds for the defining equations

of certain graded rings in terms of the reduction exponent and the multiplicity.

1. Introduction. Let (^4,m) be a local ring and a an m-primary ideal. Let

G&(A) denote the associated graded ring ®^L0a™/a™+1- Hong [7], Cho [2], and

Achilles and Schenzel [1] have shown that if A is a one-dimensional Buchsbaum

(resp. Cohen-Macaulay) ring, then the degrees of the defining equations of G&{A)

represented as a quotient of a polynomial ring over A/a are bounded above by

e(A) + 1 (resp. e(A)), where e(A) denotes the multiplicity of A with respect to

m. The main goal of this paper is to generalize this result for higher-dimensional

Buchsbaum (resp. Cohen-Macaulay) rings. Moreover, we also want to explain the

phenomenon that all the above works employed, in nonapparent and different ways,

the reduction exponent of a minimal reduction of a and obtained its invariance as

a by-product. This is of some interest because Sally [13] has discussed the problem

whether A being Cohen-Macaulay implies the invariance of the reduction exponent

of minimal reductions of m. Recall that an ideal b Ç a is called a reduction of a if

an+i _ ban for some nonnegative integer n [9] and that the reduction exponent of

b is the least integer n with this property [11, 12]. (For the theory of Buchsbaum

rings see [14].)

To achieve the above goal we will study the relationship between the reduction

exponent r(I) of a minimal reduction I of the positively graded part of a graded

ring R = ©^10 Rn and the degrees of the defining equations of R represented

as a quotient of a polynomial ring over Rç>. It will turn out that these degrees

are bounded above by max{r(7) + l,a(J)}, where a(I) denotes the least integer n

such that I can be generated by a sequence of elements which is regular in degree

> n. This bound is independent of the choice of I because it can be expressed

by means of the local cohomology modules of R in a manner like Castelnuovo's

regularity (recently studied by Ooishi [10], and Eisenbud and Goto [4]). If I can

be generated by a ¿¿-sequence [8], we always have r(I) + 1 > a(I). This implies

the invariance of r{I) and the degree bound r{I) + 1 for the defining equations

of a graded Buchsbaum ring R with Rq being a zero-dimensional local ring. In

particular, by comparing r(I) with the multiplicity e(R) of R with respect to the

maximal graded ideal, we shall obtain the following result.
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THEOREM 1.1. Let R be a graded Buchsbaum {resp. Cohen-Macauley) ring

with Rç, a zero-dimensional local ring. Then the degrees of the defining equations

of R are bounded above by e{R) + 1 {resp. e(R)).

A modified version of the above method applied to G&(A) will yield the following

generalization of the results of Hong, Cho, Achilles, and Schenzel.

THEOREM 1.2. Let A be a Buchsbaum (resp. Cohen-Macaulay) ring with d —

dim(yl) > 1 and depth(Ga(4)) >d—l. Let r(b) denote the reduction exponent of

a minimal reduction b of a. Then

(i) r(b) is independent of the choice of b,

(ii) the degrees of the defining equations of Ga{A) are bounded above by r(b) + l,

(iii) r(b) < e{A)td~1 (resp. e{A)td~1 — 1 ), where t is the least integer with the

property m* Ç a.

We would like to mention that a special situation of the Cohen-Macaulay case of

Theorem 1.2 was already considered by Cho [2] who claimed that if moreover Ga(A)

is free over A/a, the degrees of the defining equation of Ga{A) are bounded above

by e{A). But the proof for that contains an error which could not be corrected if

d > 1 (see Remark 5.2).

The proofs of the above theorems will be found in §§4 and 5, respectively. §§2

and 3 only have a preparatory character.

2. Filter-regular sequence. Throughout this paper, let R = 0^LO Rn be a

noetherian commutative graded ring such that Re, is a lock ring and the Firj-algebra

R is generated by the elements of Ri. Let M denote the unique maximal graded

ideal of R and k the residue field R/M. Put R+ = ©n>1 Rn- If F is a graded

module over R, then we denote by En the nth graded piece of E.

Let f = /i,...,/r be a sequence of homogeneous elements of R, r > 1. One

can use the following notion to measure how much f differs from being a regular

sequence.

DEFINITION, f is called n-regular if

((/li ■ • •) fi-l)'-  fi)n — (/li •• • ) fi-l)n

for i — 1,..., r. The least integer m such that f is n-regular for all n > m will be

denoted by a(f).

We shall see that the condition o(f) < oo can be characterized by the behavior

of /,- towards the associated primes of (/i,..., /¿_i), i= 1, • • •, r.

DEFINITION, f is called filter-regular (with respect ro R+) if /¿ £ P for all

primes P G Ass(Fí/(/,,..., /,_,)), P £ R+, i = 1,...,r.

This notion has its origin in the theory of Buchsbaum rings [3] and is closely

related to the notion of ti-sequences [15].

LEMMA 2.1.   a(f) < oo if and only iff is filter-regular.

PROOF. ((/i,...,/¿_i): /,)„ = (/i,...,/i-i)n for n sufficiently large if there

exists an integer m such that

(R+)m((f1,...,fi-i):fi)Ç(f1...,fi-i)
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or, equivalently,

oo

(fi,...,fi-i):fiC U(/1,...,/J_1):(F+)".
n-0

Since U^Lo(/i' • • • ' fi-i) '• {B+)n is the intersection of all primary components of

(/ii • • • > fi-i) whose associated primes do not contain R+, the last inclusion is

satisfied iff ft <£ P for all primes P G Ass{R/{fu..., /¿_i)), P ^ R+.

If a(f) < co and /%,... ,fr G R\, a(f) can only take a certain value depending

on the number r. To see this define

at(F) = inf{m G Z;HR+(R)n = 0 for all n > m}

for all i > 0, where HR+(R) denotes the ¿th local cohomology module of R with

respect to R+. For short, we will set ax = al(R).

PROPOSITION 2.2.   Let f be a filter-regular sequence in R\.  Then

a(f) = max{a, +i: i = 0,...,r — 1}.

We shall need the following lemma in the proof of Proposition 2.2.

LEMMA 2.3.   Let G be a filter-regular element in i2i.  Then

ûi-t-i + 1 < o.i{R/gR) < max{ai, a¿+i + 1}

for all i > 0.

PROOF. By the definition of a filter-regular sequence, 0 : g Ç U^Lo0 : (-R+)n-

Therefore, 0 : g is annihilated by some power of R+. Hence HlR+(0 : g) = 0 for

i > 1. Hence from the exact sequence

0 ^ 0 : g -> R -> R/0 : g -> 0

we get HlR+{R) = HlR+(R/0 : g) for i > 1. Now, from the exact sequence

0 — R/0 : g -^ R — R/gR -* 0

one can derive the exact sequence

HlR+{R)n -* H%R+(R/gR)n —* HR+  {R)n-\  —* HlR+  [R)n

for i > 0 which immediately implies the statement.

Proof of Proposition 2.2. Since
oo

0:/i Ç U0:(^+)n      and     fiKAR)a0-i ÇH°R+(R)ao=Q,
n=0

a(/i) = ar,. Therefore, the case r — 1 is immediate. For r > 1 let f denote the

sequence of the images of /a,..., /r in R/f\R. By induction and using Lemma 2.3,

we have

max{a, +i;i = 1,...,r — 1} < a(f') = max{at{R/fiR) + i;i = 0,... ,r — 2}

< max{a¿ + i;i = 0,... ,r — 1}.

Thus, since a(f) = max{a(/i),a(f )}, the statement is obvious.
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3. Reduction exponent. Let n be the maximal ideal of Rq. By tensoring

R with Rq [u](„), where u is some indeterminate, we may always assume that A;

is infinite. Then there exist minimal reductions of R+ [9]. Let / be an arbitrary

minimal reduction of R+. The reduction exponent r{I) is just the least integer n

such that Rn+i = In+i- The aim of this section is to produce some relationship

between r{I) and the local cohomology modules of R.

Set r — dim{R/nR), the analytic spread of R+. It is well known that every

homogeneous minimal basis of / consists of r linear forms.

LEMMA 3.1.   There exist filter regular sequences of R minimally generating I.

PROOF. This statement may be formulated for every homogeneous ideal J

with the property \fj — \JR+. Indeed, by induction on dim¿(J/MJ), we only

need to choose a homogeneous element g G J\MJ such that g ^ P for all primes

P G Ass(i2), P ^ R+. That is always possible because k is infinite and J\MJ is

not contained in any P by the Nakayama lemma.

PROPOSITION 3.2.   ar + r < r(I) + 1 < max{a¿ +i\i =0,...,r}.

PROOF. If r = 0, R+ is nilpotent and r(I) is the least integer n such that

Rn+\ — 0. Therefore, r(I) + 1 = ao because HR+ (R) = R. If r > 1, choose a filter-

regular sequence /i,..., fr generating F Note that I/fiR is a minimal reduction of

R+1f\R with r(I/fiR) = r(I). Then the statement will follow from the induction

hypothesis on R/f\R by using Lemma 2.3.

At this point we remark that maxjo, + t; i = 0,..., r} — 1 is the Castelnuovo

regularity of R [10]. In particular, if we define

a(J):=inf{a(f);/=(f)},

then we have the following relation.

COROLLARY 3.3.   max{r(F) + 1,a(I)} = max{o, + i\ i — 0,...,r}.

PROOF. By Lemma 2.1, Proposition 2.2, and Lemma 3.1,

a(I) = max{a¿ +î;î = 0,.. .,r — 1}.

Hence the statement follows from Proposition 3.2.

LEMMA 3.4. Suppose that I is minimally generated by a d-sequence f. Then

r(I) + l>a{I).

PROOF. By the definition of a (i-sequence,

((/1,..„/l_1):/,)n/ = (/1,...,/,_,)

for t = 1,... ,r [8, 15]. If n > r(I) + 1, then Rn — In and hence

((/l> ■• • i fi-l)'- fi)n — ((/l) • • ■ i ft-l)'- fi)n H In = (/l, • ■ • , fi-l)n-

In the following we call R a graded Buchsbaum ring if RM is a Buchsbaum local

ring [14].
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COROLLARY 3.5. Suppose that R is a graded Buchsbaum ring with dim(Fo) =

0.  Then r(I) + 1 = max{aj + i; i' = 0,..., r) [independent of the choice of I).

PROOF. Since dim(fio) = 0, / can be generated by a homogeneous sytem of

parameters of R. By [8], R is Buchsbaum iff every sty stem of parameters of F is a

d-sequence. Hence the statement follows from Lemma 3.4.

Corollary 3.5 is a generalization of the formula r(I) = a,¡ + d — 1 for Cohen-

Macaulay rings R [5]. In general, 'ifr(I) is independent of the choice of/, r(I) need

not be max{a, + i; i = 0,..., r} — 1.

EXAMPLE. Let R = k[X, Y]/(X2,XY2). Then every minimal reduction of R+

has the reduction exponent 1, whereas ao = 3.

4. Degree bound. Let f\,..., fB be a minimal basis of the Fin-module R\.

Then one can define a natural map from the polynomial ring

Rq[X] := Ro[Xi,..., Xs]

to R by sending Xi to /», i — 1,..., s. Let P denote the kernel of this map. It is not

hard to see that the set of integers occurring as degrees of elements of homogeneous

minimal bases of P is independent of the choice of f%,..., fa. Let m r denote the

maximum of these integers.

PROPOSITION 4.1. mj¡ < max{r(/) + l,a(I)} for every minimal reduction I

ofR+.

PROOF. Let Q denote the ideal of all elements of F£n[X] whose images in R

belong to I. Let m denote the maximum degree of elements of all homogeneous

minimal bases of Q. Since Fn[-^]n = Qn for n > r(I) + 1, m < r(I) + 1. Hence

we may assume that itir > m. Choose r linear forms F\,...,Fr such that the

sequence f of their images in R forms a basis of / with a(f) = a(l). Let F G P

be an arbitrary form of degree mR. Since Fi,...,Fr can be extended to a minimal

basis of Q by forms of P, F = G + YH=i TíGí for some forms G and G¿ such that

G belongs to the ideal Q' generated by forms of P of degree < mR. If mj¡ > a{I),

Gr G {(P,Fi,...,Fr-i): Fr)mR-i = (P,Fi,... ,Fr_i)m/e_i.

Hence we can omit the term GTFr in the above presentation of F. Proceeding

like that, we can successively omit Gr-iFr_i,... ,G\F\ and obtain F G Q', a

contradiction.

Combining Proposition 4.1 with Corollary 3.3, we get

"m-R < max{a¿ + i;i = 0,... ,r}

which generalizes a result of Ooishi [10, Proposition 20], and Eisenbud and Goto [4,

Theorem 1.2]. In particular, by Corollary 3.5, we have the following consequence.

COROLLARY 4.2. Let R be a graded Buchsbaum ring with dim(F£o) = 0. Then

m.R < r(I) + 1 for any minimal reduction I of R+.

PROOF OF THEOREM l.l. By Corollary 4.2, it suffices to show that r(I) <

e(R) (resp. e(R) - 1). Since dim(F0) = 0, / is a minimal reduction of M. Hence

e(R) is equal to the multiplicity of R with respect to F Note that / is generated by

a homogeneous system of parameters f = /i,..., fr of R. If F is Cohen-Macaulay,

r(I) < 1{R/I) — 1 = e(R) — 1.   If F is Buchsbaum and r = 1, consider the ring
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R' = R/H^(R). Then r{IR') < e(R') - 1 because R' is a Cohen-Macaulay ring.

Since R+HM(R) = 0 [14], it is easy to to check that r{IR') > r(I) - 1 and

e(F') = e{R). Hence r{I) < e{R). If r > 1, consider the ring R/fiR. Then

r{I/f\R) = r(I) and by the definition of Buchsbaum rings, e(R/fiR) = e(R).
Hence r(I) < e{R) by the induction hypothesis of R/fiR.

It is worth noticing that the bound r(I) + 1 of Corollary 4.2 is much better than

the bound e{R) + 1 of Theorem 1.1.

EXAMPLE. Let R be the homogeneous coordinate ring of a projective curve

given parametrically by a set S of monomials of degree e in two indeterminates t, s

such that re, te~1s, ise_1, se G S. Consider R as the subring of k[t, s] generated by

the monomials of S. Put / = (ie,se). Then r{I) < 2 if R is a Buchsbaum ring

[16, Theorem 4.1], whereas e{R) = e may be arbitrarily large. A famous example

is the twisted cubic curve with the parameters r4, t3s, ts3, s4 which is known to be

arithmetically Buchsbaum.

If Rq = k, Ooishi [10, Theorems 19 and 20] has given the bound ruR < e(R) +

r-dim(Ri)+i{R) + l, where i(R) := X^¿=o CT^^mC^)- Except in the case where

F is a Cohen-Macaulay ring, this bound is not better than the bound e(R) + 1 of

Theorem 1.1.

EXAMPLE. Let R be as in the above example with S — {t3p~t+1si\ i = 0,1,3p,

3p + 1 and i = 3/ — 1 with / = 1,... ,p}, where p is some positive integer. By [16,

Theorem 4.1], it is easy to check that F is a Buchsbaum ring with i(R) = 2» — 2.

Therefore e(R) + l = 3p + 2<4p-2 = e(R) + r - dim(Ä, ) + i(R) + 1 if p > 4.

5. The local case. Let a be an arbitrary ideal of the local ring (A,m). Set

r = dim(Ga(^4)/niGa(^4)), the analytic spread of a. Then a is called equimultiple

if ht(a) = r [6]. This notion has some relation to Zariski's equimultiplicity and is

satisfied if A is normal flat along a (an important notion in Hironaka's resolution

of singularities). The class of equimultiple ideals is rather large. It contains e.g. all

m-primary ideals.

PROPOSITION 5.1. Let A be a Buchsbaum ring and a an equimultiple ideal.

Let x\,... ,xr be elements of a. such that b = (x\,... ,xr) is a minimal reduction

of a and
{xu...,Xi) n an+1 = (x+ 1,..., Xi)an

for all n > 0, i = 1,..., r — 1. Let r(b) denote the reduction exponent of b. Set

R = Ga{A). Then
(i) r(b) = max{a, + i; i = 0,..., r} — 1,

(ii) mR < r(b) + l.

PROOF. Let /i,...,/r be the initial forms of xi,...,xr in R. Then I —

(/ii • • •, fr) is a minimal reduction of R+ with r(I) = r(b). By Corollary 3.3 and

Proposition 4.1, it suffices to show that r(I) + 1 > a(f), i.e. ((/i,..., /,_i) : f%)n =

(/l) • • • j fi-\)n for n > r(I) +1, i — 1,... ,r. Translating this condition in terms of

xi,... ,xr, we have to show that

[((xi,..., xl-1)an + an+2) : xt] f)an = {x1:..., x^a""1 + an+1.

Since the left side obviously contains the right side, it is sufficient to prove the con-

verse inclusion. Let x be an arbitrary element of the left side. Then xix = y modulo

(¡Ei,... ,Xi-i)an for some element y G (zi,... ,xt) n a"+2 = (zi,... ,xl^i)an+1.
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Thus, there is an element z G an+1 such that xz{x — z) G (xi,...,Xi-i). Since

ht(b) = ht(a) = r, X\,... ,xr belong to a system of parameters of A. Therefore,

Xi,...,xr is a d-sequence [8]. Hence ((xi,... ,i,-i): i¿)nb = (xi,... , x¿_i). Note

that a" = ban_1 Ç b. Then

x- z G ((»i,..., Xi-i): i,)na" = (xi,... ,xt_i) C\an

= (xi,...,a;i_i)an-1.

Hence we can conclude that x G (xi,... ,z¿_1)ari_1 + an+1.

Now we will apply Proposition 5.1 to prove Theorem 1.2.

PROOF OF THEOREM 1.2. Without restriction, we may assume that k — A/m

is infinite. Since a is an m-primary ideal, b is generated by a system of parameters

xi,... ,Xd of A. Set R = Ga{A). By Lemma 3.1, we may assume that the initial

forms /i,..., fd of x\,..., x¿ in R form a filter-regular sequence. Since depth(F) >

d — 1, /i,..., fd-i is a regular sequence. By [17], this implies the relation

(ïi,.-,i«-i)nan+1 = (xi,...,xt-i)an

for all n > 0, i = 1,... ,d — 1. Hence (i) and (ii) follow from Lemma 5.1. For (iii)

we first note that the case ci = 1 is already known [1, Propositions 2.2 and 2.3].

If d > 1, R/fiR = ga/XlA{A/xiA) because /i is a non-zero-divisor of R. Thus,

der)th(Ga/xiA(A/x1A)) > d - 2 and r(b/xxA) = r{I/fxR) = r(I) = r(b), where

I — (/ii • • • i fd)- By the induction hypothesis,

r(b) < e{A/XlA)td-2    (resp. e(A/x1A)td-2 - 1).

On the other hand, like in [11, Lemma 1.1], we can choose x\ so that the initial

form g of x\ in Gm(A) is filter-regular. From this it follows that (0 : g)n — 0 for n

sufficiently large. Let s be the degree of g in Gm(A). Then (m™"1"6"1"1 : xi) n m" =

mn+1 for n sufficiently large, too. Therefore, x\ is a superficial element of order s

form and we get e{A/xiA) = e{A)s [19, Chapter VIII, §8]. Since x\ £ ma Ç m*+1,

s < t. Hence we can conclude that

r(b) < e{A)td~1    (resp. e{A)td-1 - 1).

REMARK 5.2. In [2, Theorem 2], Cho claimed that if a is an m-primary

ideal of a Cohen-Macaulay ring A such that R = Ga{A) is free over A/a and

depth(F) > d — 1, then ttir < e(A). But his proof for the case d > 1 contains

the wrong argument that there is an element ii€a such that e(A/xiA) = e(A).

For example, that is impossible if a Ç m2. However, the author of the present

paper could neither give another proof nor find a counterexample to this claim.

The condition Ga(A) being free over Aja seems to be very strong. For example, if

A is regular, this condition implies that a is generated by a regular sequence [18].
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